BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36780851)

  • 1. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range.
    Lu Z; Liu X; Wang T; Huang X; Dou J; Wu D; Yu J; Wu S; Chen X
    J Colloid Interface Sci; 2023 May; 638():709-718. PubMed ID: 36780851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes.
    Aval LF; Ghoranneviss M; Pour GB
    Heliyon; 2018 Nov; 4(11):e00862. PubMed ID: 30761358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
    Dang YQ; Ren SZ; Liu G; Cai J; Zhang Y; Qiu J
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors.
    Chiu CT; Chen DH
    Nanotechnology; 2018 Apr; 29(17):175602. PubMed ID: 29451127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan-based oxygen-doped activated carbon/graphene composite for flexible supercapacitors.
    Ren R; Zhong Y; Ren X; Fan Y
    RSC Adv; 2022 Sep; 12(39):25807-25814. PubMed ID: 36199316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Hierarchical CNT/rGO-Supported MnMoO
    Mu X; Du J; Zhang Y; Liang Z; Wang H; Huang B; Zhou J; Pan X; Zhang Z; Xie E
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35775-35784. PubMed ID: 28948775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Step Solvothermal Synthesis by Ethylene Glycol to Produce N-rGO for Supercapacitor Applications.
    Rahman MO; Nor NBM; Sawaran Singh NS; Sikiru S; Dennis JO; Shukur MFBA; Junaid M; Abro GEM; Siddiqui MA; Al-Amin M
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of Ni-Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors.
    Li M; Liu F; Zhang XB; Cheng JP
    Phys Chem Chem Phys; 2016 Nov; 18(43):30068-30078. PubMed ID: 27775113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and Self-Healing Aqueous Supercapacitors for Low Temperature Applications: Polyampholyte Gel Electrolytes with Biochar Electrodes.
    Li X; Liu L; Wang X; Ok YS; Elliott JAW; Chang SX; Chung HJ
    Sci Rep; 2017 May; 7(1):1685. PubMed ID: 28490815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled 3D Graphene-Based Aerogel with Co3 O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode.
    Xie L; Su F; Xie L; Li X; Liu Z; Kong Q; Guo X; Zhang Y; Wan L; Li K; Lv C; Chen C
    ChemSusChem; 2015 Sep; 8(17):2917-26. PubMed ID: 26014119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of vanadium sulfide (VS
    Wang X; Zhang Y; Zheng J; Jiang H; Dong X; Liu X; Meng C
    J Colloid Interface Sci; 2020 Aug; 574():312-323. PubMed ID: 32335482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Temperature-Resistant Flexible Solid Supercapacitors Based on Organohydrogel Electrolytes and Microvoid-Incorporated Reduced Graphene Oxide Electrodes.
    Hou X; Zhang Q; Wang L; Gao G; Lü W
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12432-12441. PubMed ID: 33657789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Production of Mn₃O₄/rGO as an Efficient Electrode Material for Supercapacitor by Flame Plasma.
    Zhou Y; Guo L; Shi W; Zou X; Xiang B; Xing S
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29795008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meso-Microporous Carbon Nanofibrous Aerogel Electrode Material with Fluorine-Treated Wood Biochar for High-Performance Supercapacitor.
    Hasan MF; Asare K; Mantripragada S; Charles V; Shahbazi A; Zhang L
    Gels; 2024 Jan; 10(1):. PubMed ID: 38275856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors.
    Gao Z; Yang J; Huang J; Xiong C; Yang Q
    Nanoscale; 2017 Nov; 9(45):17710-17716. PubMed ID: 29130462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Hierarchically Mesoporous ZnCo
    Moon IK; Yoon S; Oh J
    Chemistry; 2017 Jan; 23(3):597-604. PubMed ID: 27805794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a "top-down" approach.
    Zhang T; Kim CH; Cheng Y; Ma Y; Zhang H; Liu J
    Nanoscale; 2015 Feb; 7(7):3285-91. PubMed ID: 25623779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes.
    Yang Y; Xi Y; Li J; Wei G; Klyui NI; Han W
    Nanoscale Res Lett; 2017 Dec; 12(1):394. PubMed ID: 28599513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.