These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36780981)
1. The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii. Motta H; Catarina Vieira Reuwsaat J; Daidrê Squizani E; da Silva Camargo M; Wichine Acosta Garcia A; Schrank A; Henning Vainstein M; Christian Staats C; Kmetzsch L Fungal Genet Biol; 2023 Mar; 165():103780. PubMed ID: 36780981 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional Heterogeneity of Farrer RA; Ford CB; Rhodes J; Delorey T; May RC; Fisher MC; Cloutman-Green E; Balloux F; Cuomo CA mSphere; 2018 Oct; 3(5):. PubMed ID: 30355668 [No Abstract] [Full Text] [Related]
4. Participation of Zip3, a ZIP domain-containing protein, in stress response and virulence in Cryptococcus gattii. Garcia AWA; Kinskovski UP; Diehl C; Reuwsaat JCV; Motta de Souza H; Pinto HB; Trentin DDS; de Oliveira HC; Rodrigues ML; Becker EM; Kmetzsch L; Vainstein MH; Staats CC Fungal Genet Biol; 2020 Nov; 144():103438. PubMed ID: 32738289 [TBL] [Abstract][Full Text] [Related]
5. Chitosan Biosynthesis and Virulence in the Human Fungal Pathogen Cryptococcus gattii. Lam WC; Upadhya R; Specht CA; Ragsdale AE; Hole CR; Levitz SM; Lodge JK mSphere; 2019 Oct; 4(5):. PubMed ID: 31597720 [No Abstract] [Full Text] [Related]
6. A Novel Role of Fungal Type I Myosin in Regulating Membrane Properties and Its Association with d-Amino Acid Utilization in Cryptococcus gattii. Khanal Lamichhane A; Garraffo HM; Cai H; Walter PJ; Kwon-Chung KJ; Chang YC mBio; 2019 Aug; 10(4):. PubMed ID: 31455652 [TBL] [Abstract][Full Text] [Related]
7. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis. Feder V; Kmetzsch L; Staats CC; Vidal-Figueiredo N; Ligabue-Braun R; Carlini CR; Vainstein MH FEBS J; 2015 Apr; 282(8):1406-18. PubMed ID: 25675897 [TBL] [Abstract][Full Text] [Related]
8. Interferon-γ promotes phagocytosis of Cryptococcus neoformans but not Cryptococcus gattii by murine macrophages. Ikeda-Dantsuji Y; Ohno H; Tanabe K; Umeyama T; Ueno K; Nagi M; Yamagoe S; Kinjo Y; Miyazaki Y J Infect Chemother; 2015 Dec; 21(12):831-6. PubMed ID: 26477011 [TBL] [Abstract][Full Text] [Related]
9. The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Ngamskulrungroj P; Himmelreich U; Breger JA; Wilson C; Chayakulkeeree M; Krockenberger MB; Malik R; Daniel HM; Toffaletti D; Djordjevic JT; Mylonakis E; Meyer W; Perfect JR Infect Immun; 2009 Oct; 77(10):4584-96. PubMed ID: 19651856 [TBL] [Abstract][Full Text] [Related]
10. Contribution of Laccase Expression to Immune Response against Cryptococcus gattii Infection. Hansakon A; Ngamskulrungroj P; Angkasekwinai P Infect Immun; 2020 Feb; 88(3):. PubMed ID: 31871099 [TBL] [Abstract][Full Text] [Related]
11. Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii. Farrer RA; Desjardins CA; Sakthikumar S; Gujja S; Saif S; Zeng Q; Chen Y; Voelz K; Heitman J; May RC; Fisher MC; Cuomo CA mBio; 2015 Sep; 6(5):e00868-15. PubMed ID: 26330512 [TBL] [Abstract][Full Text] [Related]
12. Cryptococcus neoformans and Cryptococcus gattii genes preferentially expressed during rat macrophage infection. Goulart L; Rosa e Silva LK; Chiapello L; Silveira C; Crestani J; Masih D; Vainstein MH Med Mycol; 2010 Nov; 48(7):932-41. PubMed ID: 20302549 [TBL] [Abstract][Full Text] [Related]
13. Molecular typing, in vitro susceptibility and virulence of Cryptococcus neoformans/Cryptococcus gattii species complex clinical isolates from south-eastern Brazil. Grizante Barião PH; Tonani L; Cocio TA; Martinez R; Nascimento É; von Zeska Kress MR Mycoses; 2020 Dec; 63(12):1341-1351. PubMed ID: 32869413 [TBL] [Abstract][Full Text] [Related]
14. Cryptococcus neoformans and Cryptococcus gattii clinical isolates from Thailand display diverse phenotypic interactions with macrophages. Hansakon A; Mutthakalin P; Ngamskulrungroj P; Chayakulkeeree M; Angkasekwinai P Virulence; 2019 Dec; 10(1):26-36. PubMed ID: 30520685 [TBL] [Abstract][Full Text] [Related]
15. Zap1 regulates zinc homeostasis and modulates virulence in Cryptococcus gattii. Schneider Rde O; Fogaça Nde S; Kmetzsch L; Schrank A; Vainstein MH; Staats CC PLoS One; 2012; 7(8):e43773. PubMed ID: 22916306 [TBL] [Abstract][Full Text] [Related]
17. Yang C; Shen W; Wang L; Zang X; Huang Y; Deng H; Zhou Y; Xie M; Xue X; Shen D Acta Biochim Biophys Sin (Shanghai); 2024 Feb; 56(2):291-303. PubMed ID: 37885429 [No Abstract] [Full Text] [Related]
18. The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. Ngamskulrungroj P; Chang Y; Sionov E; Kwon-Chung KJ mBio; 2012; 3(3):. PubMed ID: 22570277 [TBL] [Abstract][Full Text] [Related]
19. Differences in nitrogen metabolism between Cryptococcus neoformans and C. gattii, the two etiologic agents of cryptococcosis. Ngamskulrungroj P; Chang Y; Roh J; Kwon-Chung KJ PLoS One; 2012; 7(3):e34258. PubMed ID: 22479580 [TBL] [Abstract][Full Text] [Related]