These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36780995)

  • 21. Transport of citrate-coated silver nanoparticles in saturated porous media.
    Lim M; Hwang G; Bae S; Jang MH; Choi S; Kim H; Hwang YS
    Environ Geochem Health; 2020 Jun; 42(6):1753-1766. PubMed ID: 31506875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.
    Wang C; Bobba AD; Attinti R; Shen C; Lazouskaya V; Wang LP; Jin Y
    Environ Sci Technol; 2012 Jul; 46(13):7151-8. PubMed ID: 22642719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retention and transport behavior of microplastic particles in water-saturated porous media.
    Wang Y; Xu L; Chen H; Zhang M
    Sci Total Environ; 2022 Feb; 808():152154. PubMed ID: 34871674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays.
    Hwang G; Kim D
    Environ Pollut; 2024 Jun; 351():124007. PubMed ID: 38677461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of fragmentation on the transport of polyvinyl chloride and low-density polyethylene in saturated quartz sand.
    Tumwet FC; Serbe R; Kleint T; Scheytt T
    Sci Total Environ; 2022 Aug; 836():155657. PubMed ID: 35513138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using colloidal AFM probe technique and XDLVO theory to predict the transport of nanoplastics in porous media.
    Feng LJ; Shi ZL; Duan JL; Han Y; Sun XD; Ma JY; Liu XY; Zhang HX; Guo N; Song C; Zong WS; Yuan XZ
    Chemosphere; 2023 Jan; 311(Pt 1):136968. PubMed ID: 36283429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media.
    Jiang Y; Yin X; Xi X; Guan D; Sun H; Wang N
    Water Res; 2021 May; 196():117016. PubMed ID: 33735622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fibrous and filmy microplastics exert opposite effects on the mobility of nanoplastics in saturated porous media.
    Han W; Hou Y; Yu Y; Lu Z; Qiu Y
    J Hazard Mater; 2022 Jul; 434():128912. PubMed ID: 35452988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of particle size on copper oxychloride transport through saturated sand columns.
    Paradelo M; Pérez-Rodríguez P; Arias-Estévez M; López-Periago JE
    J Agric Food Chem; 2010 Jun; 58(11):6870-5. PubMed ID: 20465213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of titanium dioxide nanoparticles on the transport and deposition of microplastics in quartz sand.
    Cai L; He L; Peng S; Li M; Tong M
    Environ Pollut; 2019 Oct; 253():351-357. PubMed ID: 31325879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand.
    He L; Rong H; Wu D; Li M; Wang C; Tong M
    Water Res; 2020 Jul; 178():115808. PubMed ID: 32371288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Humic acid induced weak attachment of fullerene nC
    Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B
    J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the Transport of the "New-Horizon" Reduced Graphene Oxide-Metal Oxide Nanohybrids in Water-Saturated Porous Media.
    Wang D; Jin Y; Park CM; Heo J; Bai X; Aich N; Su C
    Environ Sci Technol; 2018 Apr; 52(8):4610-4622. PubMed ID: 29582656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Transport and Model Calculation of Microplastics Under the Influence of Ionic Type, Strength, and Iron Oxide].
    Zhang R; Yu KF; Huang L; Chen YL; Ma J; Weng LP; Li YT
    Huan Jing Ke Xue; 2023 Sep; 44(9):5102-5113. PubMed ID: 37699828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media.
    Lv X; Sun Y; Ji R; Gao B; Wu J; Lu Q; Jiang H
    Water Res; 2018 Sep; 141():251-258. PubMed ID: 29800833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The long-term release and particle fracture behaviors of nanoplastics retained in porous media: Effects of surfactants, natural organic matters, antibiotics, and bacteria.
    Zhang M; Hou J; Xia J; Wu J; You G; Miao L
    Sci Total Environ; 2024 May; 925():171563. PubMed ID: 38460706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of increased small nanoplastic particle retention in water-saturated sand media with montmorillonite and diatomite: Particle sizes, water components, and modelling.
    Yang X; Xu N; Wang X; Yang L; Sun S
    J Hazard Mater; 2024 Mar; 465():133056. PubMed ID: 38008050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregation and Deposition Kinetics of Polystyrene Microplastics and Nanoplastics in Aquatic Environment.
    Liu L; Song J; Zhang M; Jiang W
    Bull Environ Contam Toxicol; 2021 Oct; 107(4):741-747. PubMed ID: 33914100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.