BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 3678106)

  • 1. Characterization of fetal human brain cultures. Development of a potential model for selectively purifying human glial cells in culture.
    Rutka JT; Giblin JR; Balkissoon R; Wen D; Myatt CA; McCulloch JR; Rosenblum ML
    Dev Neurosci; 1987; 9(3):154-73. PubMed ID: 3678106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of normal human brain cultures. Evidence for the outgrowth of leptomeningeal cells.
    Rutka JT; Kleppe-Hoifodt H; Emma DA; Giblin JR; Dougherty DV; McCulloch JR; De Armond SJ; Rosenblum ML
    Lab Invest; 1986 Jul; 55(1):71-85. PubMed ID: 3724065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glial fibrillary acidic protein, vimentin and fibronectin in primary cultures of human glioma and fetal brain.
    Paetau A
    Acta Neuropathol; 1988; 75(5):448-55. PubMed ID: 3287832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultrastructural and immunocytochemical analysis of leptomeningeal and meningioma cultures.
    Rutka JT; Giblin J; Dougherty DV; McCulloch JR; DeArmond SJ; Rosenblum ML
    J Neuropathol Exp Neurol; 1986 May; 45(3):285-303. PubMed ID: 3083053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunocytochemical and biochemical characterization of glial phenotypes in normal and immortalized cultures derived from 3-day-old chick embryo encephalon.
    Kentroti S; Vernadakis A
    Glia; 1996 Oct; 18(2):79-91. PubMed ID: 8913772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of endothelial cells derived from the blood-brain barrier and of astrocytes in culture.
    Ghazanfari FA; Stewart RR
    Brain Res; 2001 Jan; 890(1):49-65. PubMed ID: 11164768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of growth and induction of differentiation in a malignant human glioma cell line by normal leptomeningeal extracellular matrix proteins.
    Rutka JT; Giblin JR; Apodaca G; DeArmond SJ; Stern R; Rosenblum ML
    Cancer Res; 1987 Jul; 47(13):3515-22. PubMed ID: 3555773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment and characterization of a cell line from a human gliosarcoma.
    Rutka JT; Giblin JR; Høifødt HK; Dougherty DV; Bell CW; McCulloch JR; Davis RL; Wilson CB; Rosenblum ML
    Cancer Res; 1986 Nov; 46(11):5893-902. PubMed ID: 3019542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial cells derived from aged mouse brain in culture display both mature and immature astrocytic phenotypes.
    Vernadakis A; Kentroti S
    J Neurosci Res; 1994 Jul; 38(4):451-8. PubMed ID: 7932875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression in glial cells derived from chick embryo cerebral hemispheres at an advanced stage of development.
    Kentroti S; Vernadakis A
    J Neurosci Res; 1997 Feb; 47(3):322-31. PubMed ID: 9039654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of glial subpopulations in cultures of the ovine central nervous system.
    Elder GA; Potts BJ; Sawyer M
    Glia; 1988; 1(5):317-27. PubMed ID: 2852637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminin and fibronectin in normal and malignant neuroectodermal cells.
    Liesi P
    Med Biol; 1984; 62(3):163-80. PubMed ID: 6387323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.
    Voigt T
    J Comp Neurol; 1989 Nov; 289(1):74-88. PubMed ID: 2808761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of glial fibrillary acidic protein, actin, fibronectin and factor VIII antigen in human astrocytomas.
    Lolait SJ; Harmer JH; Auteri G; Pedersen JS; Toh BH
    Pathology; 1983 Oct; 15(4):373-8. PubMed ID: 6326028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental appearance, antigenic profile, and proliferation of glial cells of the human embryonic spinal cord: an immunocytochemical study using dissociated cultured cells.
    Aloisi F; Giampaolo A; Russo G; Peschle C; Levi G
    Glia; 1992; 5(3):171-81. PubMed ID: 1375191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative biochemical, morphological, and immunocytochemical studies between C-6 glial cells of early and late passages and advanced passages of glial cells derived from aged mouse cerebral hemispheres.
    Lee K; Kentroti S; Billie H; Bruce C; Vernadakis A
    Glia; 1992; 6(4):245-57. PubMed ID: 1361180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.
    deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R
    J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of opioid-dependent glial development in dissociated and organotypic cultures of mouse central nervous system: critical periods and target specificity.
    Hauser KF; Stiene-Martin A
    Brain Res Dev Brain Res; 1991 Oct; 62(2):245-55. PubMed ID: 1769103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro differentiation of neural progenitor cells from prenatal rat brain: common cell surface glycoprotein on three glial cell subsets.
    Blass-Kampmann S; Kindler-Röhrborn A; Deissler H; D'Urso D; Rajewsky MF
    J Neurosci Res; 1997 Apr; 48(2):95-111. PubMed ID: 9130138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapidly proliferating glial cells isolated from adult mouse brain have a differentiative capacity in response to cyclic AMP.
    Satoh J; Tabira T; Kim SU
    Neurosci Res; 1994 Aug; 20(2):175-84. PubMed ID: 7808700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.