BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36781676)

  • 21. Ecotoxicological assessment after the world's largest tailing dam collapse (Fundão dam, Mariana, Brazil): effects on oribatid mites.
    Buch AC; Sautter KD; Marques ED; Silva-Filho EV
    Environ Geochem Health; 2020 Nov; 42(11):3575-3595. PubMed ID: 32409973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa.
    Adhikari S; Marcelo-Silva J; Rajakaruna N; Siebert SJ
    Sci Total Environ; 2022 Feb; 806(Pt 2):150659. PubMed ID: 34597555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioaccumulation and human health risk assessment of heavy metals in food crops irrigated with freshwater and treated wastewater: a case study in Southern Cairo, Egypt.
    Osman HEM; Abdel-Hamed EMW; Al-Juhani WSM; Al-Maroai YAO; El-Morsy MHE
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50217-50229. PubMed ID: 33948848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China.
    Wu B; Peng H; Sheng M; Luo H; Wang X; Zhang R; Xu F; Xu H
    Ecotoxicol Environ Saf; 2021 Sep; 220():112368. PubMed ID: 34082243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review.
    Ghosh D; Maiti SK
    Int J Phytoremediation; 2021; 23(6):559-576. PubMed ID: 33174450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accumulation of heavy metals in phytoliths from reeds growing on mining environments in Southern Europe.
    Delplace G; Schreck E; Pokrovsky OS; Zouiten C; Blondet I; Darrozes J; Viers J
    Sci Total Environ; 2020 Apr; 712():135595. PubMed ID: 31818547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review: mine tailings in an African tropical environment-mechanisms for the bioavailability of heavy metals in soils.
    Kaninga BK; Chishala BH; Maseka KK; Sakala GM; Lark MR; Tye A; Watts MJ
    Environ Geochem Health; 2020 Apr; 42(4):1069-1094. PubMed ID: 31134395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution characteristics, bioaccumulation and trophic transfer of heavy metals in the food web of grassland ecosystems.
    Zhang H; Zhao Y; Wang Z; Liu Y
    Chemosphere; 2021 Sep; 278():130407. PubMed ID: 33823346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heavy metal tolerance of orchid populations growing on abandoned mine tailings: A case study in Sardinia Island (Italy).
    De Agostini A; Caltagirone C; Caredda A; Cicatelli A; Cogoni A; Farci D; Guarino F; Garau A; Labra M; Lussu M; Piano D; Sanna C; Tommasi N; Vacca A; Cortis P
    Ecotoxicol Environ Saf; 2020 Feb; 189():110018. PubMed ID: 31812823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains.
    Butt A; Qurat-Ul-Ain ; Rehman K; Khan MX; Hesselberg T
    Environ Monit Assess; 2018 Nov; 190(12):698. PubMed ID: 30397822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Accumulation and Transport Characteristics of Cd, Pb, Zn, and As in Different Maize Varieties].
    Ren C; Xiao JH; Li JT; Du QQ; Zhu LW; Wang H; Zhu RZ; Zhao HY
    Huan Jing Ke Xue; 2022 Aug; 43(8):4232-4252. PubMed ID: 35971720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil contamination and plant uptake of heavy metals at polluted sites in China.
    Wang QR; Cui YS; Liu XM; Dong YT; Christie P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 May; 38(5):823-38. PubMed ID: 12744435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources.
    Yadav R; Singh G; Santal AR; Singh NP
    J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt.
    Rashed MN
    J Hazard Mater; 2010 Jun; 178(1-3):739-46. PubMed ID: 20188467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.
    Sun Z; Xie X; Wang P; Hu Y; Cheng H
    Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil.
    Babu AG; Shea PJ; Sudhakar D; Jung IB; Oh BT
    J Environ Manage; 2015 Mar; 151():160-6. PubMed ID: 25575343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M; Imanifard A
    Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.