These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 36781703)
1. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. Priyadarshini N; Steube N; Wiens D; Narikawa R; Wilde A; Hochberg GKA; Enomoto G Photochem Photobiol Sci; 2023 Jun; 22(6):1415-1427. PubMed ID: 36781703 [TBL] [Abstract][Full Text] [Related]
2. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. Rockwell NC; Lagarias JC J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679 [TBL] [Abstract][Full Text] [Related]
4. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Ikeuchi M; Ishizuka T Photochem Photobiol Sci; 2008 Oct; 7(10):1159-67. PubMed ID: 18846279 [TBL] [Abstract][Full Text] [Related]
5. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Hirose Y; Rockwell NC; Nishiyama K; Narikawa R; Ukaji Y; Inomata K; Lagarias JC; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4974-9. PubMed ID: 23479641 [TBL] [Abstract][Full Text] [Related]
6. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
7. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Nagae T; Unno M; Koizumi T; Miyanoiri Y; Fujisawa T; Masui K; Kamo T; Wada K; Eki T; Ito Y; Hirose Y; Mishima M Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972439 [TBL] [Abstract][Full Text] [Related]
9. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Rockwell NC; Njuguna SL; Roberts L; Castillo E; Parson VL; Dwojak S; Lagarias JC; Spiller SC Biochemistry; 2008 Jul; 47(27):7304-16. PubMed ID: 18549244 [TBL] [Abstract][Full Text] [Related]
10. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. Fushimi K; Narikawa R Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813 [TBL] [Abstract][Full Text] [Related]
11. Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Hirose Y; Shimada T; Narikawa R; Katayama M; Ikeuchi M Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9528-33. PubMed ID: 18621684 [TBL] [Abstract][Full Text] [Related]
12. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
13. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149 [TBL] [Abstract][Full Text] [Related]
14. Primary photodynamics of the green/red-absorbing photoswitching regulator of the chromatic adaptation E domain from Fremyella diplosiphon. Gottlieb SM; Kim PW; Rockwell NC; Hirose Y; Ikeuchi M; Lagarias JC; Larsen DS Biochemistry; 2013 Nov; 52(46):8198-208. PubMed ID: 24147541 [TBL] [Abstract][Full Text] [Related]
15. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES; Walker JM; Phillips GN; Vierstra RD Structure; 2013 Jan; 21(1):88-97. PubMed ID: 23219880 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
17. Conservation and diversity in the primary forward photodynamics of red/green cyanobacteriochromes. Gottlieb SM; Kim PW; Chang CW; Hanke SJ; Hayer RJ; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2015 Feb; 54(4):1028-42. PubMed ID: 25545467 [TBL] [Abstract][Full Text] [Related]
18. Green/red light-sensing mechanism in the chromatic acclimation photosensor. Nagae T; Fujita Y; Tsuchida T; Kamo T; Seto R; Hamada M; Aoyama H; Sato-Tomita A; Fujisawa T; Eki T; Miyanoiri Y; Ito Y; Soeta T; Ukaji Y; Unno M; Mishima M; Hirose Y Sci Adv; 2024 Jun; 10(24):eadn8386. PubMed ID: 38865454 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Bandara S; Rockwell NC; Zeng X; Ren Z; Wang C; Shin H; Martin SS; Moreno MV; Lagarias JC; Yang X Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33727422 [TBL] [Abstract][Full Text] [Related]
20. Two Cyanobacterial Photoreceptors Regulate Photosynthetic Light Harvesting by Sensing Teal, Green, Yellow, and Red Light. Wiltbank LB; Kehoe DM mBio; 2016 Feb; 7(1):e02130-15. PubMed ID: 26861023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]