These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36782015)
1. Generalizability and performance of methods to detect non-wear with free-living accelerometer recordings. Skovgaard EL; Roswall MA; Pedersen NH; Larsen KT; Grøntved A; Brønd JC Sci Rep; 2023 Feb; 13(1):2496. PubMed ID: 36782015 [TBL] [Abstract][Full Text] [Related]
2. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X. Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148 [TBL] [Abstract][Full Text] [Related]
3. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. Zhou SM; Hill RA; Morgan K; Stratton G; Gravenor MB; Bijlsma G; Brophy S BMJ Open; 2015 May; 5(5):e007447. PubMed ID: 25968000 [TBL] [Abstract][Full Text] [Related]
4. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Accelerometry Methods for Estimating Physical Activity. Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355 [TBL] [Abstract][Full Text] [Related]
6. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related]
7. Detecting Sleep and Nonwear in 24-h Wrist Accelerometer Data from the National Health and Nutrition Examination Survey. Thapa-Chhetry B; Arguello DJ; John D; Intille S Med Sci Sports Exerc; 2022 Nov; 54(11):1936-1946. PubMed ID: 36007161 [TBL] [Abstract][Full Text] [Related]
8. Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature. Vert A; Weber KS; Thai V; Turner E; Beyer KB; Cornish BF; Godkin FE; Wong C; McIlroy WE; Van Ooteghem K BMC Med Res Methodol; 2022 May; 22(1):147. PubMed ID: 35596151 [TBL] [Abstract][Full Text] [Related]
9. Accelerometer wear-site detection: When one site does not suit all, all of the time. Rowlands AV; Olds TS; Bakrania K; Stanley RM; Parfitt G; Eston RG; Yates T; Fraysse F J Sci Med Sport; 2017 Apr; 20(4):368-372. PubMed ID: 28117147 [TBL] [Abstract][Full Text] [Related]
10. A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults. Stewart T; Narayanan A; Hedayatrad L; Neville J; Mackay L; Duncan S Med Sci Sports Exerc; 2018 Dec; 50(12):2595-2602. PubMed ID: 30048411 [TBL] [Abstract][Full Text] [Related]
11. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents. Scott JJ; Rowlands AV; Cliff DP; Morgan PJ; Plotnikoff RC; Lubans DR J Sci Med Sport; 2017 Dec; 20(12):1101-1106. PubMed ID: 28501418 [TBL] [Abstract][Full Text] [Related]
12. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Choi L; Ward SC; Schnelle JF; Buchowski MS Med Sci Sports Exerc; 2012 Oct; 44(10):2009-16. PubMed ID: 22525772 [TBL] [Abstract][Full Text] [Related]
13. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510 [TBL] [Abstract][Full Text] [Related]
14. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275 [TBL] [Abstract][Full Text] [Related]
15. Development of a multi-wear-site, deep learning-based physical activity intensity classification algorithm using raw acceleration data. Ng JYY; Zhang JH; Hui SS; Jiang G; Yau F; Cheng J; Ha AS PLoS One; 2024; 19(3):e0299295. PubMed ID: 38452147 [TBL] [Abstract][Full Text] [Related]
16. Non-wear or sleep? Evaluation of five non-wear detection algorithms for raw accelerometer data. Ahmadi MN; Nathan N; Sutherland R; Wolfenden L; Trost SG J Sports Sci; 2020 Feb; 38(4):399-404. PubMed ID: 31826746 [TBL] [Abstract][Full Text] [Related]
17. CARL: a running recognition algorithm for free-living accelerometer data. Davis JJ; Straczkiewicz M; Harezlak J; Gruber AH Physiol Meas; 2021 Dec; 42(11):. PubMed ID: 34883471 [TBL] [Abstract][Full Text] [Related]
18. Comparison and validation of accelerometer wear time and non-wear time algorithms for assessing physical activity levels in children and adolescents. Vanhelst J; Vidal F; Drumez E; Béghin L; Baudelet JB; Coopman S; Gottrand F BMC Med Res Methodol; 2019 Apr; 19(1):72. PubMed ID: 30940079 [TBL] [Abstract][Full Text] [Related]
19. An Evaluation of Participant Perspectives and Wear-Time Compliance for a Wrist-Worn Versus Thigh-Worn Accelerometer in Cancer Survivors. Hidde MC; Crisafio ME; Gomes E; Lyden K; Leach HJ J Phys Act Health; 2023 Feb; 20(2):129-133. PubMed ID: 36535268 [TBL] [Abstract][Full Text] [Related]
20. Stepping towards More Intuitive Physical Activity Metrics with Wrist-Worn Accelerometry: Validity of an Open-Source Step-Count Algorithm. Maylor BD; Edwardson CL; Dempsey PC; Patterson MR; Plekhanova T; Yates T; Rowlands AV Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]