These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36782384)

  • 61. Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting.
    Yin J; Zhou P; An L; Huang L; Shao C; Wang J; Liu H; Xi P
    Nanoscale; 2016 Jan; 8(3):1390-400. PubMed ID: 26671685
    [TBL] [Abstract][Full Text] [Related]  

  • 62. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts.
    Li H; Ke F; Zhu J
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29414838
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Amorphous Bimetallic Oxide-Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries.
    Wei L; Karahan HE; Zhai S; Liu H; Chen X; Zhou Z; Lei Y; Liu Z; Chen Y
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28804931
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nano-engineering of prussian blue analogues to core-shell architectures: Enhanced catalytic activity for zinc-air battery.
    Najam T; Wang M; Javed MS; Ibraheem S; Song Z; Ahmed MM; Rehman AU; Cai X; Shah SSA
    J Colloid Interface Sci; 2020 Oct; 578():89-95. PubMed ID: 32512399
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hexagonal perovskite Sr
    Wei L; Hu J; Liu H; Zhang W; Zheng H; Wu S; Tang K
    Dalton Trans; 2022 May; 51(18):7100-7108. PubMed ID: 35451444
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide.
    Zhu Y; Tahini HA; Hu Z; Chen ZG; Zhou W; Komarek AC; Lin Q; Lin HJ; Chen CT; Zhong Y; Fernández-Díaz MT; Smith SC; Wang H; Liu M; Shao Z
    Adv Mater; 2020 Jan; 32(1):e1905025. PubMed ID: 31713899
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spherical Murray-Type Assembly of Co-N-C Nanoparticles as a High-Performance Trifunctional Electrocatalyst.
    Deng C; Wu KH; Scott J; Zhu S; Zheng X; Amal R; Wang DW
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9925-9933. PubMed ID: 30726678
    [TBL] [Abstract][Full Text] [Related]  

  • 68. yMoO
    Zhao D; Ning S; Yu X; Wu Q; Zhou W; Dan J; Zhu Y; Zhu H; Wang N; Li L
    J Colloid Interface Sci; 2022 Mar; 609():269-278. PubMed ID: 34896828
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A High-Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo0.8 Fe0.2 O2.
    Zhu Y; Zhou W; Chen Y; Yu J; Liu M; Shao Z
    Adv Mater; 2015 Nov; 27(44):7150-5. PubMed ID: 26450659
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting.
    Jiang N; You B; Sheng M; Sun Y
    Angew Chem Int Ed Engl; 2015 May; 54(21):6251-4. PubMed ID: 25900260
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting.
    Li Y; Huang B; Sun Y; Luo M; Yang Y; Qin Y; Wang L; Li C; Lv F; Zhang W; Guo S
    Small; 2019 Jan; 15(1):e1804212. PubMed ID: 30515971
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Construction of Fe-doped CoP with hybrid nanostructures as a bifunctional catalyst for overall water splitting.
    Yang Q; Dai H; Liao W; Tong X; Fu Y; Qian M; Chen T
    Dalton Trans; 2021 Dec; 50(48):18069-18076. PubMed ID: 34846399
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In Situ Growth of Tetrametallic FeCoMnNi-MOF-74 on Nickel Foam as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Oxygen and Hydrogen.
    Zhang M; Xu W; Li T; Zhu H; Zheng Y
    Inorg Chem; 2020 Oct; 59(20):15467-15477. PubMed ID: 32991151
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting.
    Wang P; Pu Z; Li Y; Wu L; Tu Z; Jiang M; Kou Z; Amiinu IS; Mu S
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26001-26007. PubMed ID: 28714664
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Accelerating the water splitting kinetics of CoP microcubes anchored on a graphene electrocatalyst by Mn incorporation.
    Xu X; Liang H; Tang G; Hong Y; Xie Y; Qi Z; Xu B; Wang Z
    Nanoscale Adv; 2019 Jan; 1(1):177-183. PubMed ID: 36132440
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metal-Organic Framework-Derived Hollow CoS
    Lee YJ; Park SK
    Small; 2022 Apr; 18(16):e2200586. PubMed ID: 35289501
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Prussian blue analogue assisted formation of iron doped CoNiSe
    Yang Y; Guo F; Zhang L; Wang D; Guo X; Zhou X; Sun D; Yang Z; Lei Z
    J Colloid Interface Sci; 2022 Nov; 626():68-76. PubMed ID: 35780553
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Palladium Phosphide as a Stable and Efficient Electrocatalyst for Overall Water Splitting.
    Luo F; Zhang Q; Yu X; Xiao S; Ling Y; Hu H; Guo L; Yang Z; Huang L; Cai W; Cheng H
    Angew Chem Int Ed Engl; 2018 Nov; 57(45):14862-14867. PubMed ID: 30238677
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting.
    Wei B; Xu G; Hei J; Zhang L; Huang T; Wang Q
    J Colloid Interface Sci; 2021 Nov; 602():619-626. PubMed ID: 34147752
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hierarchical Porous Prism Arrays Composed of Hybrid Ni-NiO-Carbon as Highly Efficient Electrocatalysts for Overall Water Splitting.
    Zhou W; Lu XF; Chen JJ; Zhou T; Liao PQ; Wu M; Li GR
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38906-38914. PubMed ID: 30360101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.