These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36785139)

  • 1. Mid-infrared frequency combs and staggered spectral patterns in χ
    Amiune N; Fan Z; Pankratov VV; Puzyrev DN; Skryabin DV; Zawilski KT; Schunemann PG; Breunig I
    Opt Express; 2023 Jan; 31(2):907-915. PubMed ID: 36785139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system.
    Jiang S; Guo C; Fu H; Che K; Xu H; Cai Z
    Opt Express; 2020 Dec; 28(25):38304-38316. PubMed ID: 33379645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators.
    Wang CY; Herr T; Del'Haye P; Schliesser A; Hofer J; Holzwarth R; Hänsch TW; Picqué N; Kippenberg TJ
    Nat Commun; 2013; 4():1345. PubMed ID: 23299895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-infrared frequency comb based on a quantum cascade laser.
    Hugi A; Villares G; Blaser S; Liu HC; Faist J
    Nature; 2012 Dec; 492(7428):229-33. PubMed ID: 23235876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third-harmonic-assisted four-wave mixing in a chip-based microresonator frequency comb generation.
    Zhang H; Wu Y; Yang H; Ju Z; Kang Z; He J; Pan S
    Opt Express; 2022 Oct; 30(21):37379-37393. PubMed ID: 36258327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic bandgap microcombs at 1064 nm.
    Spektor G; Zang J; Dan A; Briles TC; Brodnik GM; Liu H; Black JA; Carlson DR; Papp SB
    APL Photonics; 2024; 9(2):. PubMed ID: 38681736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon-chip mid-infrared frequency comb generation.
    Griffith AG; Lau RK; Cardenas J; Okawachi Y; Mohanty A; Fain R; Lee YH; Yu M; Phare CT; Poitras CB; Gaeta AL; Lipson M
    Nat Commun; 2015 Feb; 6():6299. PubMed ID: 25708922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-microcomb generation in a synchronously driven waveguide ring resonator.
    Xu Y; Erkintalo M; Lin Y; Coen S; Ma H; Murdoch SG
    Opt Lett; 2021 Dec; 46(23):6002-6005. PubMed ID: 34851944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR.
    He J; Li Y
    Opt Express; 2020 Oct; 28(21):30771-30783. PubMed ID: 33115071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative Kerr soliton generation at 2μm in a silicon nitride microresonator.
    Karunakaran AN; Clementi M; Lafforgue C; Yakar O; Stroganov A; Varming P; Pu M; Yvind K; Montague P; Brès CS
    Opt Express; 2024 Apr; 32(9):14929-14939. PubMed ID: 38859156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared ultra-broadband optical Kerr frequency comb based on a CdTe ring microresonator: a theoretical investigation.
    Lu S; Liu X; Shi Y; Yang H; Long Z; Li Y; Wu H; Liang H
    Opt Express; 2022 Sep; 30(19):33969-33979. PubMed ID: 36242420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral extension and synchronization of microcombs in a single microresonator.
    Zhang S; Silver JM; Bi T; Del'Haye P
    Nat Commun; 2020 Dec; 11(1):6384. PubMed ID: 33318482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers.
    Savchenkov AA; Ilchenko VS; Di Teodoro F; Belden PM; Lotshaw WT; Matsko AB; Maleki L
    Opt Lett; 2015 Aug; 40(15):3468-71. PubMed ID: 26258334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency noise correlation between the offset frequency and the mode spacing in a mid-infrared quantum cascade laser frequency comb.
    Shehzad A; Brochard P; Matthey R; Kapsalidis F; Shahmohammadi M; Beck M; Hugi A; Jouy P; Faist J; Südmeyer T; Schilt S
    Opt Express; 2020 Mar; 28(6):8200-8210. PubMed ID: 32225449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency Comb Generation via Cascaded Second-Order Nonlinearities in Microresonators.
    Szabados J; Puzyrev DN; Minet Y; Reis L; Buse K; Villois A; Skryabin DV; Breunig I
    Phys Rev Lett; 2020 May; 124(20):203902. PubMed ID: 32501070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passively mode-locked interband cascade optical frequency combs.
    Bagheri M; Frez C; Sterczewski LA; Gruidin I; Fradet M; Vurgaftman I; Canedy CL; Bewley WW; Merritt CD; Kim CS; Kim M; Meyer JR
    Sci Rep; 2018 Feb; 8(1):3322. PubMed ID: 29463807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs.
    Wang PH; Ferdous F; Miao H; Wang J; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Dec; 20(28):29284-95. PubMed ID: 23388754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects.
    Griffith AG; Yu M; Okawachi Y; Cardenas J; Mohanty A; Gaeta AL; Lipson M
    Opt Express; 2016 Jun; 24(12):13044-50. PubMed ID: 27410323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators.
    Hu J; Nitiss E; He J; Liu J; Yakar O; Weng W; Kippenberg TJ; Brès CS
    Sci Adv; 2022 Dec; 8(50):eadd8252. PubMed ID: 36516262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.