These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36785162)

  • 1. Wavefront recording plane-like method for polygon-based holograms.
    Wang F; Blinder D; Ito T; Shimobaba T
    Opt Express; 2023 Jan; 31(2):1224-1233. PubMed ID: 36785162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of computer-generated holograms using tilted wavefront recording plane method.
    Arai D; Shimobaba T; Murano K; Endo Y; Hirayama R; Hiyama D; Kakue T; Ito T
    Opt Express; 2015 Jan; 23(2):1740-7. PubMed ID: 25835929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Hologram Calculation Method Based on Wavefront Precise Diffraction.
    Wang Z; Li Y; Tang Z; Li Z; Wang D
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast generation of digital holograms based on warping of the wavefront recording plane.
    Tsang PW; Poon TC
    Opt Express; 2015 Mar; 23(6):7667-73. PubMed ID: 25837104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of real-time large computer generated hologram using wavefront recording method.
    Weng J; Shimobaba T; Okada N; Nakayama H; Oikawa M; Masuda N; Ito T
    Opt Express; 2012 Feb; 20(4):4018-23. PubMed ID: 22418159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration and expansion of a photorealistic computer-generated hologram using backward ray tracing and multiple off-axis wavefront recording plane methods.
    Sun M; Yuan Y; Bi Y; Zhang S; Zhu J; Zhang W
    Opt Express; 2020 Nov; 28(23):34994-35005. PubMed ID: 33182955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of wavefront recording plane-based hologram calculations: ray-tracing method versus look-up table method.
    Yanagihara H; Shimobaba T; Kakue T; Ito T
    Appl Opt; 2020 Mar; 59(8):2400-2408. PubMed ID: 32225774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the quality of full-color holographic three-dimensional displays using depth-related multiple wavefront recording planes with uniform active areas.
    Piao YL; Erdenebat MU; Zhao Y; Kwon KC; Piao ML; Kang H; Kim N
    Appl Opt; 2020 Jun; 59(17):5179-5188. PubMed ID: 32543538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image quality improvement of holographic 3-D images based on a wavefront recording plane method with a limiting diffraction region.
    Yanagihara H; Shimobaba T; Kakue T; Ito T
    Opt Express; 2020 Jun; 28(12):17853-17867. PubMed ID: 32679988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Max-depth-range technique for faster full-color hologram generation.
    Sifatul Islam M; Piao YL; Zhao Y; Kwon KC; Cho E; Kim N
    Appl Opt; 2020 Apr; 59(10):3156-3164. PubMed ID: 32400598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU.
    Phan AH; Piao ML; Gil SK; Kim N
    Appl Opt; 2014 Aug; 53(22):4817-24. PubMed ID: 25090310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display.
    Shimobaba T; Nakayama H; Masuda N; Ito T
    Opt Express; 2010 Sep; 18(19):19504-9. PubMed ID: 20940846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time relighting of digital holograms based on wavefront recording plane method.
    Tsang PW; Cheung KW; Poon TC
    Opt Express; 2012 Mar; 20(6):5962-7. PubMed ID: 22418472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane.
    Chang C; Wu J; Qi Y; Yuan C; Nie S; Xia J
    Appl Opt; 2016 Oct; 55(28):7988-7996. PubMed ID: 27828036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point-polygon hybrid method for generating holograms.
    Wang F; Blinder D; Ito T; Shimobaba T
    Opt Lett; 2023 Jun; 48(12):3339-3342. PubMed ID: 37319096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rendering of 3D scenes in analytical polygon-based computer holography with texture mapping.
    Qin W; Fu Q; Zhang Y; Zhang B; Wang P; Poon TC; Gu X
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):A32-A39. PubMed ID: 38437421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of fully computed hologram stereogram using lookup table and wavefront recording plane methods.
    Dai P; Lv G; Wang Z; Zhang X; Gong X; Feng Q
    Appl Opt; 2021 Mar; 60(7):1814-1820. PubMed ID: 33690268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display.
    Pan Y; Wang Y; Liu J; Li X; Jia J
    Appl Opt; 2013 Jan; 52(1):A290-9. PubMed ID: 23292405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating hologram generation using oriented-separable convolution and wavefront recording planes.
    Shimobaba T; Makowski M; Shiomi H; Wang F; Hara T; Sypek M; Suszek J; Nishitsuji T; Shiraki A; Kakue T; Ito T
    Opt Express; 2022 Sep; 30(20):36564-36575. PubMed ID: 36258582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer generated holograms from three dimensional meshes using an analytic light transport model.
    Ahrenberg L; Benzie P; Magnor M; Watson J
    Appl Opt; 2008 Apr; 47(10):1567-74. PubMed ID: 18382587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.