These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36785427)

  • 1. Robust five-degree-of-freedom measurement system with self-compensation and air turbulence protection.
    Liu W; Yu Z; Duan F; Hu H; Fu X; Bao R
    Opt Express; 2023 Jan; 31(3):4652-4666. PubMed ID: 36785427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-compensation method for dual-beam roll angle measurement of linear stages.
    Fan Y; Lou Z; Huang Y; Fan KC
    Opt Express; 2021 Aug; 29(17):26340-26352. PubMed ID: 34615071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error Analysis and Compensation of a Laser Measurement System for Simultaneously Measuring Five-Degree-of-Freedom Error Motions of Linear Stages.
    Cai Y; Sang Q; Lou ZF; Fan KC
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31491908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust roll angular error measurement system for precision machines.
    Cai Y; Yang B; Fan KC
    Opt Express; 2019 Mar; 27(6):8027-8036. PubMed ID: 31052628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a compact four degree-of-freedom active compensation system to restrain laser's angular drift and parallel drift.
    Liu S; Tan S; Huang Y; Wang Y; Fan KC
    Rev Sci Instrum; 2019 Nov; 90(11):115002. PubMed ID: 31779377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drift Reduction of a 4-DOF Measurement System Caused by Unstable Air Refractive Index.
    Li R; Wang Y; Tao P; Cheng R; Cheng Z; Wei Y; Dang X
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small angular displacement measurement based on an autocollimator and a common-path compensation principle.
    Li K; Kuang C; Liu X
    Rev Sci Instrum; 2013 Jan; 84(1):015108. PubMed ID: 23387696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion.
    Hu P; Mao S; Tan JB
    Opt Express; 2015 Nov; 23(22):28389-401. PubMed ID: 26561109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology.
    Yu X; Gillmer SR; Woody SC; Ellis JD
    Rev Sci Instrum; 2016 Jun; 87(6):065109. PubMed ID: 27370499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise reduction of air turbulence via thequasi-common-path method.
    He Y; Zhao S; Wei H; Li Y
    Appl Opt; 2017 Aug; 56(23):6668-6672. PubMed ID: 29047960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of fixed-point two-degree-of-freedom angular error measurement system with precision improvement function.
    Su YM; Liu CS
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38717266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mitigation Method for Optical-Turbulence-Induced Errors and Optimal Target Design in Vision-Based Displacement Measurement.
    Huang X; Dai W; Zhang Y; Xing L; Ye Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric error modeling and compensation for high precision composite optical measurement systems.
    Liu J; Chen Q; Wang J; Sun S; Zhang X; Du J; Jiang J; Tian Z; Yu S; Yan W
    Opt Express; 2023 Dec; 31(25):42015-42035. PubMed ID: 38087585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: Autocollimation with ultra-high resolution and stability using telephoto objective together with optical enlargement and beam drift compensation.
    Zhu F; Tan X; Tan J; Fan Z
    Rev Sci Instrum; 2016 Aug; 87(8):086110. PubMed ID: 27587181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Compact and High-Precision Three-Degree-of-Freedom Grating Encoder Based on a Quadrangular Frustum Pyramid Prism.
    Wang S; Liao B; Shi N; Li X
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.
    Ghosh A; Rakesh Krishnan T; Tejaswy P; Mandal A; Pradhan JK; Ranasingh S
    ISA Trans; 2014 Jul; 53(4):1216-22. PubMed ID: 24947430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.