These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36785433)

  • 1. Numerical simulation and observed rotational relaxation in CW and pulsed HBr-filled hollow-core fiber lasers.
    Zhou Z; Huang W; Cui Y; Li H; Pei W; Wang M; Wang Z
    Opt Express; 2023 Jan; 31(3):4739-4750. PubMed ID: 36785433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High power mid-infrared fiber amplifier at 3.1 µm by acetylene-filled hollow-core fibers.
    Huang W; Zhang X; Zhou Z; Li Z; Cui Y; Li X; Chen J; Wang P; Wang Z
    Opt Express; 2023 Jul; 31(15):24835-24844. PubMed ID: 37475301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3.1 W mid-infrared fiber laser at 4.16 µm based on HBr-filled hollow-core silica fibers.
    Zhou Z; Huang W; Cui Y; Li H; Pei W; Li X; Li Z; Wang M; Wang Z
    Opt Lett; 2022 Nov; 47(22):5785-5788. PubMed ID: 37219103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards high-power mid-IR light source tunable from 3.8 to 4.5 µm by HBr-filled hollow-core silica fibres.
    Zhou Z; Wang Z; Huang W; Cui Y; Li H; Wang M; Xi X; Gao S; Wang Y
    Light Sci Appl; 2022 Jan; 11(1):15. PubMed ID: 35022386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers.
    Zhou Z; Tang N; Li Z; Huang W; Wang Z; Wu W; Hua W
    Opt Express; 2018 Jul; 26(15):19144-19153. PubMed ID: 30114175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrow-Linewidth 2 μm All-Fiber Laser Amplifier with a Highly Stable and Precisely Tunable Wavelength for Gas Molecule Absorption in Photonic Crystal Hollow-Core Fibers.
    Pei W; Li H; Cui Y; Zhou Z; Wang M; Wang Z
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber laser source of 8 W at 3.1 µm based on acetylene-filled hollow-core silica fibers.
    Huang W; Wang Z; Zhou Z; Cui Y; Li H; Pei W; Wang M; Chen J
    Opt Lett; 2022 May; 47(9):2354-2357. PubMed ID: 35486798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-infrared fiber gas amplifier in acetylene-filled hollow-core fiber.
    Huang W; Zhou Z; Cui Y; Wang Z; Chen J
    Opt Lett; 2022 Sep; 47(18):4676-4679. PubMed ID: 36107061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering.
    Cui Y; Huang W; Li Z; Zhou Z; Wang Z
    Opt Express; 2019 Oct; 27(21):30396-30404. PubMed ID: 31684287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-peak-power pump-modulated quasi-CW fiber laser.
    Hong Z; Wan Y; Xi X; Zhang H; Wang X; Xu X
    Appl Opt; 2022 Mar; 61(7):1826-1833. PubMed ID: 35297865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed fiber laser oscillator at 1.7 µm by stimulated Raman scattering in H
    Pei W; Li H; Huang W; Wang M; Wang Z
    Opt Express; 2021 Oct; 29(21):33915-33925. PubMed ID: 34809192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-fiber gas Raman laser oscillator.
    Li H; Huang W; Pei W; Zhou Z; Cui Y; Wang M; Wang Z
    Opt Lett; 2021 Oct; 46(20):5208-5211. PubMed ID: 34653154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8  μm.
    Li Z; Huang W; Cui Y; Wang Z
    Opt Lett; 2018 Oct; 43(19):4671-4674. PubMed ID: 30272711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal behavior of the high-power pulsed gas terahertz laser pumped by a fundamental mode TEA CO
    Geng L; Zhang R; Yan P; Qu Y; Ji Z; Zhai Y; Zhao W; Zhang Z; Zhang W; Yang K
    Opt Express; 2022 Oct; 30(22):39961-39975. PubMed ID: 36298937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-infrared fiber-optic photothermal interferometry.
    Li Z; Wang Z; Yang F; Jin W; Ren W
    Opt Lett; 2017 Sep; 42(18):3718-3721. PubMed ID: 28914941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of pulsed gas amplifiers operating in hollow-core optical fibers.
    Lane RA; Madden TJ
    Opt Express; 2018 Jun; 26(12):15693-15704. PubMed ID: 30114827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-infrared 1  W hollow-core fiber gas laser source.
    Xu M; Yu F; Knight J
    Opt Lett; 2017 Oct; 42(20):4055-4058. PubMed ID: 29028011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3 μm CW lasers for myringotomy and microsurgery.
    Linden KJ; Pfeffer CP; Sousa JG; D'Alleva N; Aslani A; Gorski G; Kenna M; Poe DS
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8565():. PubMed ID: 24382990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas fiber lasers may represent a breakthrough in creating powerful radiation sources in the mid-IR.
    Pryamikov A
    Light Sci Appl; 2022 Feb; 11(1):36. PubMed ID: 35149675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source.
    Wang Z; Gu B; Chen Y; Li Z; Xi X
    Appl Opt; 2017 Sep; 56(27):7657-7661. PubMed ID: 29047745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.