These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36785536)
21. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. Kundu D; Hazra C; Chatterjee A; Chaudhari A; Mishra S J Photochem Photobiol B; 2014 Nov; 140():194-204. PubMed ID: 25169770 [TBL] [Abstract][Full Text] [Related]
22. In-situ synthesis of Cu Su X; Chen W; Han Y; Wang D; Yao J Appl Surf Sci; 2021 Jan; 536():147945. PubMed ID: 33012933 [TBL] [Abstract][Full Text] [Related]
23. Template synthesis of the Cu Li Y; Cai R; Lü R; Gao L; Qin S R Soc Open Sci; 2018 Dec; 5(12):181474. PubMed ID: 30662752 [TBL] [Abstract][Full Text] [Related]
24. Imparting Pharmaceutical Applications to the Surface of Fabrics for Wound and Skin Care by Ultrasonic Waves. Gedanken A; Perkas N; Perelshtein I; Lipovsky A Curr Med Chem; 2018; 25(41):5739-5754. PubMed ID: 29284390 [TBL] [Abstract][Full Text] [Related]
25. In-situ deposition of Cu Emam HE; Ahmed HB; Bechtold T Carbohydr Polym; 2017 Jun; 165():255-265. PubMed ID: 28363548 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Irshad MA; Nawaz R; Zia Ur Rehman M; Imran M; Ahmad J; Ahmad S; Inam A; Razzaq A; Rizwan M; Ali S Chemosphere; 2020 Nov; 258():127352. PubMed ID: 32554013 [TBL] [Abstract][Full Text] [Related]
28. Charge transfer channels of silver @ cuprous oxide heterostructure core-shell nanoparticles strengthen high photocatalytic antibacterial activity. Feng H; Wang W; Wang W; Zhang M; Wang C; Ma C; Li W; Chen S J Colloid Interface Sci; 2021 Nov; 601():531-543. PubMed ID: 34090030 [TBL] [Abstract][Full Text] [Related]
29. Ag nanoparticle-ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach. Li Z; Tang H; Yuan W; Song W; Niu Y; Yan L; Yu M; Dai M; Feng S; Wang M; Liu T; Jiang P; Fan Y; Wang ZL Nanotechnology; 2014 Apr; 25(14):145702. PubMed ID: 24622377 [TBL] [Abstract][Full Text] [Related]
30. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing. Feng J; Hontañón E; Blanes M; Meyer J; Guo X; Santos L; Paltrinieri L; Ramlawi N; Smet LC; Nirschl H; Kruis FE; Schmidt-Ott A; Biskos G ACS Appl Mater Interfaces; 2016 Jun; 8(23):14756-65. PubMed ID: 27196424 [TBL] [Abstract][Full Text] [Related]
31. Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites With Effective Photocatalytic and Bactericidal Activity. Shan Z; Yang Y; Shi H; Zhu J; Tan X; Luan Y; Jiang Z; Wang P; Qin J Front Chem; 2021; 9():755836. PubMed ID: 34568290 [TBL] [Abstract][Full Text] [Related]
32. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. Rambabu K; Bharath G; Banat F; Show PL J Hazard Mater; 2021 Jan; 402():123560. PubMed ID: 32759001 [TBL] [Abstract][Full Text] [Related]
33. In Situ Synthesis of Silver Nanoparticles on Flame-Retardant Cotton Textiles Treated with Biological Phytic Acid and Antibacterial Activity. Zhou Q; Chen J; Lu Z; Tian Q; Shao J Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407868 [TBL] [Abstract][Full Text] [Related]
34. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Salem SS; Fouda A Biol Trace Elem Res; 2021 Jan; 199(1):344-370. PubMed ID: 32377944 [TBL] [Abstract][Full Text] [Related]
35. Simultaneous hydrogen production and ibuprofen degradation by green synthesized Cu Chen CH; Lin YC; Peng YP; Lin MH Chemosphere; 2021 Dec; 284():131360. PubMed ID: 34217925 [TBL] [Abstract][Full Text] [Related]
36. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities. Surendra TV; Roopan SM; Al-Dhabi NA; Arasu MV; Sarkar G; Suthindhiran K Nanoscale Res Lett; 2016 Dec; 11(1):546. PubMed ID: 27933594 [TBL] [Abstract][Full Text] [Related]
37. Biological relevance of CuFeO Antonoglou O; Lafazanis K; Mourdikoudis S; Vourlias G; Lialiaris T; Pantazaki A; Dendrinou-Samara C Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():264-274. PubMed ID: 30889700 [TBL] [Abstract][Full Text] [Related]
38. Cuprous oxide nanoparticles incorporated into a polymeric matrix embedded in fabrics to prevent spread of SARS-CoV-2. Usseglio N; Onnainty R; Konigheim B; Aguilar J; Petiti JP; Lingua G; Leimgruber C; Bonafé Allende JC; Torres A; Granero G Int J Pharm; 2023 Apr; 636():122790. PubMed ID: 36863542 [TBL] [Abstract][Full Text] [Related]
39. Green synthesis of ionic liquid mediated neodymium oxide nanoparticles via Muthulakshmi V; Dhilip Kumar C; Sundrarajan M J Biomater Sci Polym Ed; 2022 Jun; 33(8):1063-1082. PubMed ID: 35130106 [TBL] [Abstract][Full Text] [Related]
40. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Ramesh M; Anbuvannan M; Viruthagiri G Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():864-70. PubMed ID: 25459609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]