BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36785823)

  • 1. Pyrolysis of
    Garba K; Mohammed IY; Isa YM; Abubakar LG; Abakr YA; Hameed BH
    Heliyon; 2023 Feb; 9(2):e13234. PubMed ID: 36785823
    [No Abstract]   [Full Text] [Related]  

  • 2. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies.
    Lee XJ; Lee LY; Gan S; Thangalazhy-Gopakumar S; Ng HK
    Bioresour Technol; 2017 Jul; 236():155-163. PubMed ID: 28399419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 May; 38(1_suppl):77-85. PubMed ID: 31957598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotubes production from real-world waste plastics and the pyrolysis behaviour.
    Zhu Y; Miao J; Zhang Y; Li C; Wang Y; Cheng Y; Long M; Wang J; Wu C
    Waste Manag; 2023 Jul; 166():141-151. PubMed ID: 37172515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X
    Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell.
    Lei Z; Wang S; Fu H; Gao W; Wang B; Zeng J; Xu J
    Bioresour Technol; 2019 Jun; 282():228-235. PubMed ID: 30870688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion.
    Torres-García E; Ramírez-Verduzco LF; Aburto J
    Waste Manag; 2020 Apr; 106():203-212. PubMed ID: 32240937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass valorization of Eichhornia crassipes root using thermogravimetric analysis.
    Pal DB; Tiwari AK; Srivastava N; Ahmad I; Abohashrh M; Gupta VK
    Environ Res; 2022 Nov; 214(Pt 4):114046. PubMed ID: 35998700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on thermochemical characteristics properties and pyrolysis kinetics of the mixtures of waste corn stalk and pyrolusite.
    Du J; Gao L; Yang Y; Chen G; Guo S; Omran M; Chen J; Ruan R
    Bioresour Technol; 2021 Mar; 324():124660. PubMed ID: 33434872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable valorization of water hyacinth waste pollutant via pyrolysis for advance microbial fuel investigation.
    Pal DB; Tiwari AK; Prasad N; Syed A; Bahkali AH; Srivastava N; Singh RP; Gupta VK
    Chemosphere; 2023 Feb; 314():137602. PubMed ID: 36563719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis characteristics, kinetics, and biochar of fermented pine sawdust-based waste.
    Zhang Y; Hu J; Cheng X; Tahir MH
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39994-40007. PubMed ID: 36602730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Intrinsic Physicochemical Properties of Agroforestry Waste on Its Pyrolysis Characteristics and Behavior.
    Liu H; Zhao B; Zhang X; Zhang Y
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of maize cob and bean straw pyrolysis and combustion.
    Okot DK; Bilsborrow PE; Phan AN; Manning DAC
    Heliyon; 2023 Jun; 9(6):e17236. PubMed ID: 37389069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies.
    Rasool T; Najar I; Srivastava VC; Pandey A
    Bioresour Technol; 2021 Oct; 337():125466. PubMed ID: 34320746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-interaction of volatiles in fast co-pyrolysis of waste tyre and corn stover via TG-FTIR and rapid infrared heating techniques.
    Li C; Liu Z; Yu J; Hu E; Zeng Y; Tian Y
    Waste Manag; 2023 Sep; 171():421-432. PubMed ID: 37783137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis.
    Islam MA; Asif M; Hameed BH
    Bioresour Technol; 2015 Mar; 179():227-233. PubMed ID: 25545092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis Kinetic Study of Polylactic Acid.
    Alhulaybi Z; Dubdub I; Al-Yaari M; Almithn A; Al-Naim AF; Aljanubi H
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis kinetics behavior of solid leather wastes.
    Guan Y; Liu C; Peng Q; Zaman F; Zhang H; Jin Z; Wang A; Wang W; Huang Y
    Waste Manag; 2019 Dec; 100():122-127. PubMed ID: 31536922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.