These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 3678612)
1. Histone modifications accompanying the onset of developmental commitment. Chambers SA; Shaw BR Dev Biol; 1987 Dec; 124(2):523-31. PubMed ID: 3678612 [TBL] [Abstract][Full Text] [Related]
2. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237 [TBL] [Abstract][Full Text] [Related]
3. Fractionation of Micromeres, Mesomeres, and Macromeres of 16-cell Stage Sea Urchin Embryos by Elutriation*: (sea urchin embryo/blastomere/elutriation/micromere/mesomere/macromere). Yamaguchi M; Kinoshita T; Ohba Y Dev Growth Differ; 1994 Aug; 36(4):381-387. PubMed ID: 37281624 [TBL] [Abstract][Full Text] [Related]
4. Range and stability of cell fate determination in isolated sea urchin blastomeres. Livingston BT; Wilt FH Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367 [TBL] [Abstract][Full Text] [Related]
5. The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: functional equivalence of the CS H1 and frog H1M (B4) proteins. Mandl B; Brandt WF; Superti-Furga G; Graninger PG; Birnstiel ML; Busslinger M Mol Cell Biol; 1997 Mar; 17(3):1189-200. PubMed ID: 9032246 [TBL] [Abstract][Full Text] [Related]
7. Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction. Chuang CK; Wikramanayake AH; Mao CA; Li X; Klein WH Dev Genet; 1996; 19(3):231-7. PubMed ID: 8952065 [TBL] [Abstract][Full Text] [Related]
8. Interactions of different vegetal cells with mesomeres during early stages of sea urchin development. Khaner O; Wilt F Development; 1991 Jul; 112(3):881-90. PubMed ID: 1935693 [TBL] [Abstract][Full Text] [Related]
9. Distribution of histone variants in the sea urchin chromatin fractions obtained by selective micrococcal nuclease digestion. Jasinskiene NE; Jasinskas AL; Gineitis AA Mol Biol Rep; 1985 Oct; 10(4):199-203. PubMed ID: 4069105 [TBL] [Abstract][Full Text] [Related]
10. The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division. Summers RG; Musial CE; Cheng PC; Leith A; Marko M J Electron Microsc Tech; 1991 May; 18(1):24-30. PubMed ID: 2056349 [TBL] [Abstract][Full Text] [Related]
11. The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle. Duncan RE; Whiteley AH Mol Reprod Dev; 2011; 78(10-11):868-78. PubMed ID: 22006441 [TBL] [Abstract][Full Text] [Related]
12. SPECIES SPECIFIC PATTERN OF CILIOGENESIS IN DEVELOPING SEA URCHIN EMBRYOS. Masuda M Dev Growth Differ; 1979; 21(6):545-552. PubMed ID: 37281736 [TBL] [Abstract][Full Text] [Related]
13. Polarized distribution of L-type calcium channels in early sea urchin embryos. Dale B; Yazaki I; Tosti E Am J Physiol; 1997 Sep; 273(3 Pt 1):C822-5. PubMed ID: 9316401 [TBL] [Abstract][Full Text] [Related]
14. Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo. Masui M; Kominami T Dev Growth Differ; 2001 Feb; 43(1):43-53. PubMed ID: 11148451 [TBL] [Abstract][Full Text] [Related]
15. Site and stage specific action of endogenous nuclease and micrococcal nuclease on histone genes of sea urchin embryos. Anderson OD; Yu M; Wilt F Dev Biol; 1986 Sep; 117(1):109-13. PubMed ID: 3017792 [TBL] [Abstract][Full Text] [Related]
16. The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres. Khaner O; Wilt F Development; 1990 Jul; 109(3):625-34. PubMed ID: 2401215 [TBL] [Abstract][Full Text] [Related]
17. Translational regulation of histone synthesis in the sea urchin strongylocentrotus purpuratus. Herlands L; Allfrey VG; Poccia D J Cell Biol; 1982 Jul; 94(1):219-23. PubMed ID: 7119016 [TBL] [Abstract][Full Text] [Related]
18. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants. Minokawa T; Amemiya S Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026 [TBL] [Abstract][Full Text] [Related]
19. Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin. Cognetti G; Shaw BR Nucleic Acids Res; 1981 Nov; 9(21):5609-21. PubMed ID: 7312627 [TBL] [Abstract][Full Text] [Related]
20. Constitutive promoter occupancy by the MBF-1 activator and chromatin modification of the developmental regulated sea urchin alpha-H2A histone gene. Di Caro V; Cavalieri V; Melfi R; Spinelli G J Mol Biol; 2007 Feb; 365(5):1285-97. PubMed ID: 17134720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]