These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 3678612)
21. Micromere Differentiation in the Sea Urchin Embryo: Two-Dimensional Gel Electrophoretic Analysis of Newly Synthesized Proteins: (sea urchin/micromere/protein synthesis/differentiation). Matsuda R; Kitajima T; Ohinata H; Katoh Y; Higashinakagawa T Dev Growth Differ; 1988 Feb; 30(1):25-33. PubMed ID: 37280888 [TBL] [Abstract][Full Text] [Related]
22. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos. Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667 [TBL] [Abstract][Full Text] [Related]
23. A Stereometric Analysis of Karyokinesis, Cytokinesis and Cell Arrangements during and following Fourth Cleavage Period in the Sea Urchin, Lytechinus variegatus: (sea urchin embryo/cell division patterns/stereo imaging/3-D reconstruction). Summers RG; Morrill JB; Leith A; Marko M; Piston DW; Stonebraker AT Dev Growth Differ; 1993 Feb; 35(1):41-57. PubMed ID: 37280928 [TBL] [Abstract][Full Text] [Related]
24. Isolation and amino acid sequence analysis reveal an ancient evolutionary origin of the cleavage stage (CS) histones of the sea urchin. Brandt WF; Schwager SU; Rodrigues JA; Busslinger M Eur J Biochem; 1997 Aug; 247(3):784-91. PubMed ID: 9288898 [TBL] [Abstract][Full Text] [Related]
25. Micromere formation and its evolutionary implications in the sea urchin. Emura N; Yajima M Curr Top Dev Biol; 2022; 146():211-238. PubMed ID: 35152984 [TBL] [Abstract][Full Text] [Related]
26. [Nucleosomes of active chromatin from sea urchin embryo cells are rich in early histone variants]. Iasinskene NE; Iasinskas AL; Gineĭtis AA Mol Biol (Mosk); 1988; 22(1):257-66. PubMed ID: 3374487 [TBL] [Abstract][Full Text] [Related]
27. Distribution of concanavalin A receptor sites on specific populations of embryonic cells. Roberson M; Neri A; Oppenheimer SB Science; 1975 Aug; 189(4203):639-40. PubMed ID: 1162345 [TBL] [Abstract][Full Text] [Related]
28. Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava. Henry JQ; Tagawa K; Martindale MQ Evol Dev; 2001; 3(6):375-90. PubMed ID: 11806633 [TBL] [Abstract][Full Text] [Related]
29. Studies on Unequal Cleavage in Sea Urchins II. Surface Differentiation and the Direction of Nuclear Migration: (sea urchin micromere/cortical differentiation/equal-unequal cleavage). Dan K; Endo S; Uemura I Dev Growth Differ; 1983; 25(3):227-237. PubMed ID: 37281944 [TBL] [Abstract][Full Text] [Related]
30. Complete regulation of development throughout metamorphosis of sea urchin embryos devoid of macromeres. Amemiya S Dev Growth Differ; 1996 Oct; 38(5):465-476. PubMed ID: 37281784 [TBL] [Abstract][Full Text] [Related]
31. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Poon J; Fries A; Wessel GM; Yajima M Nat Commun; 2019 Aug; 10(1):3779. PubMed ID: 31439829 [TBL] [Abstract][Full Text] [Related]
32. Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres. Nasir A; Reynolds SD; Keng PC; Angerer LM; Angerer RC Anal Biochem; 1992 May; 203(1):22-6. PubMed ID: 1381875 [TBL] [Abstract][Full Text] [Related]
33. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres. Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036 [TBL] [Abstract][Full Text] [Related]
34. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746 [TBL] [Abstract][Full Text] [Related]
35. A regulatory gene network that directs micromere specification in the sea urchin embryo. Oliveri P; Carrick DM; Davidson EH Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443 [TBL] [Abstract][Full Text] [Related]
36. Alterations in chromatin structure during early sea urchin embryogenesis. Savić A; Richman P; Williamson P; Poccia D Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3706-10. PubMed ID: 6943576 [TBL] [Abstract][Full Text] [Related]
37. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Wray GA; Raff RA Dev Biol; 1989 Apr; 132(2):458-70. PubMed ID: 2924998 [TBL] [Abstract][Full Text] [Related]
38. Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Bošković A; Bender A; Gall L; Ziegler-Birling C; Beaujean N; Torres-Padilla ME Epigenetics; 2012 Jul; 7(7):747-57. PubMed ID: 22647320 [TBL] [Abstract][Full Text] [Related]
39. The nucleotide and amino acid coding sequence of a gene for H1 histone that interacts with euchromatin. The early embryonic H1 gene of the sea urchin Strongylocentrotus purpuratus. Levy S; Sures I; Kedes L J Biol Chem; 1982 Aug; 257(16):9438-43. PubMed ID: 7107576 [TBL] [Abstract][Full Text] [Related]
40. Histone gene switch in the sea urchin embryo. Identification of late embryonic histone messenger ribonucleic acids and the control of their synthesis. Hieter PA; Hendricks MB; Hemminki K; Weinberg ES Biochemistry; 1979 Jun; 18(13):2707-16. PubMed ID: 476047 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]