These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 3678617)

  • 1. Early-life malnutrition selectively retards the development of distal- but not proximal-cue navigation.
    Castro CA; Rudy JW
    Dev Psychobiol; 1987 Sep; 20(5):521-37. PubMed ID: 3678617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entorhinal cortex lesions impair the use of distal but not proximal landmarks during place navigation in the rat.
    Parron C; Poucet B; Save E
    Behav Brain Res; 2004 Oct; 154(2):345-52. PubMed ID: 15313022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of developmental trajectories for place and cued navigation in the Morris water task.
    Akers KG; Hamilton DA
    Dev Psychobiol; 2007 Sep; 49(6):553-64. PubMed ID: 17680604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in cue perception in a visual scene: investigation of cue type.
    Barkley CL; Gabriel KI
    Behav Neurosci; 2007 Apr; 121(2):291-300. PubMed ID: 17469918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial cue utilization in chronically malnourished rats: task-specific learning deficits.
    Goodlett CR; Valentino ML; Morgane PJ; Resnick O
    Dev Psychobiol; 1986 Jan; 19(1):1-15. PubMed ID: 3699248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of perinatal protein malnutrition on spatial learning and memory behaviour and brain-derived neurotrophic factor concentration in the brain tissue in young rats.
    Wang L; Xu RJ
    Asia Pac J Clin Nutr; 2007; 16 Suppl 1():467-72. PubMed ID: 17392152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential control of navigation by locale and taxon cues in the Morris water task.
    Hamilton DA; Rosenfelt CS; Whishaw IQ
    Behav Brain Res; 2004 Oct; 154(2):385-97. PubMed ID: 15313026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The flexible use of multiple cue relationships in spatial navigation: a comparison of water maze performance following hippocampal, medial septal, prefrontal cortex, or posterior parietal cortex lesions.
    Compton DM; Griffith HR; McDaniel WF; Foster RA; Davis BK
    Neurobiol Learn Mem; 1997 Sep; 68(2):117-32. PubMed ID: 9322255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of a cue strategy preference on the water maze task in aged C57B6 x SJL F1 hybrid mice.
    Nicolle MM; Prescott S; Bizon JL
    Learn Mem; 2003; 10(6):520-4. PubMed ID: 14657263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze.
    Young GS; Choleris E; Kirkland JB
    Physiol Behav; 2006 Apr; 87(4):794-9. PubMed ID: 16516936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early postnatal protein malnutrition affects learning and memory in the distal but not in the proximal cue version of the Morris water maze.
    Fukuda MT; Françolin-Silva AL; Almeida SS
    Behav Brain Res; 2002 Jul; 133(2):271-7. PubMed ID: 12110460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of orientation and spatial learning on the radial maze in mice.
    Chapillon P; Roullet P; Lassalle JM
    Dev Psychobiol; 1995 Dec; 28(8):429-42. PubMed ID: 8582531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylphenidate improves cue navigation in the Morris water maze in rats.
    Zeise ML; Espinoza S; González A; Cerda FS; Nacarate J; Yáñez CG; Morales B
    Neuroreport; 2007 Jul; 18(10):1059-62. PubMed ID: 17558296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in cue-dependent spatial navigation may be revealed by in-depth swimming analysis.
    Harvey DR; Brant L; Commins S
    Behav Processes; 2009 Oct; 82(2):190-7. PubMed ID: 19576274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory.
    Williams MT; Morford LL; Wood SL; Wallace TL; Fukumura M; Broening HW; Vorhees CV
    Synapse; 2003 Jun; 48(3):138-48. PubMed ID: 12645039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of spatial orientation strategies of male and female Wistar rats in a Morris water escape task.
    Blokland A; Rutten K; Prickaerts J
    Behav Brain Res; 2006 Aug; 171(2):216-24. PubMed ID: 16647766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interhippocampal synthesis of lateralized place navigation engrams.
    Fenton AA; Arolfo MP; Nerad L; Bures J
    Hippocampus; 1995; 5(1):16-24. PubMed ID: 7787943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of spatial navigation in rats: a role for response requirements?
    Carman HM; Mactutus CF
    Behav Neurosci; 2001 Aug; 115(4):870-9. PubMed ID: 11508726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze.
    Ranade SC; Rose A; Rao M; Gallego J; Gressens P; Mani S
    Neuroscience; 2008 Apr; 152(4):859-66. PubMed ID: 18329816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions.
    de Bruin JP; Moita MP; de Brabander HM; Joosten RN
    Neurobiol Learn Mem; 2001 Mar; 75(2):164-78. PubMed ID: 11222058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.