These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36786201)

  • 1. Cumulative Effect of pH and Redox Triggers on Highly Adaptive Transient Coacervates.
    Chowdhuri S; Das S; Kushwaha R; Das T; Das BK; Das D
    Chemistry; 2023 Apr; 29(24):e202203820. PubMed ID: 36786201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy.
    Jing H; Du X; Mo L; Wang H
    Int J Biol Macromol; 2021 Dec; 192():1169-1177. PubMed ID: 34678379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy.
    Perro A; Giraud L; Coudon N; Shanmugathasan S; Lapeyre V; Goudeau B; Douliez JP; Ravaine V
    J Colloid Interface Sci; 2019 Jul; 548():275-283. PubMed ID: 31004960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer.
    Wang L; Liu L; Dong B; Zhao H; Zhang M; Chen W; Hong Y
    Acta Biomater; 2017 May; 54():259-270. PubMed ID: 28286038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Coacervation Between Gelatin and Chia Mucilage as an Alternative of Encapsulating Agents.
    Hernández-Nava R; López-Malo A; Palou E; Ramírez-Corona N; Jiménez-Munguía MT
    J Food Sci; 2019 Jun; 84(6):1281-1287. PubMed ID: 31066918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein encapsulation via polyelectrolyte complex coacervation: Protection against protein denaturation.
    Zhao M; Zacharia NS
    J Chem Phys; 2018 Oct; 149(16):163326. PubMed ID: 30384671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microencapsulation of Plant Phenolic Extracts Using Complex Coacervation Incorporated in Ultrafiltered Cheese Against AlCl
    Soliman TN; Mohammed DM; El-Messery TM; Elaaser M; Zaky AA; Eun JB; Shim JH; El-Said MM
    Front Nutr; 2022; 9():929977. PubMed ID: 35845781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the Interactions between Simple Coacervates and Chemicals for Water Depollution by Self-coacervation.
    Gimenez G; Marin E; Zanon A; Lapeyre V; Douliez JP; Ravaine V; Perro A
    Langmuir; 2024 Oct; ():. PubMed ID: 39418541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates.
    Li X; Erni P; van der Gucht J; de Vries R
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs.
    Wang J; Abbas M; Huang Y; Wang J; Li Y
    Commun Chem; 2023 Nov; 6(1):243. PubMed ID: 37935871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coacervates: Recent developments as nanostructure delivery platforms for therapeutic biomolecules.
    Ban E; Kim A
    Int J Pharm; 2022 Aug; 624():122058. PubMed ID: 35905931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications.
    Zhou L; Shi H; Li Z; He C
    Macromol Rapid Commun; 2020 Nov; 41(21):e2000149. PubMed ID: 32431012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-switchable pickering emulsions stabilized by polyelectrolyte-biosurfactant complex coacervate colloids.
    Laquerbe S; Carvalho A; Schmutz M; Poirier A; Baccile N; Ben Messaoud G
    J Colloid Interface Sci; 2021 Oct; 600():23-36. PubMed ID: 34000475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly monodisperse colloidal coacervates based on a bioactive lactose-modified chitosan: From synthesis to characterization.
    Furlani F; Sacco P; Marsich E; Donati I; Paoletti S
    Carbohydr Polym; 2017 Oct; 174():360-368. PubMed ID: 28821079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastin-like polypeptide coacervates as reversibly triggerable compartments for synthetic cells.
    Chen C; Ganar KA; de Haas RJ; Jarnot N; Hogeveen E; de Vries R; Deshpande S
    Commun Chem; 2024 Sep; 7(1):198. PubMed ID: 39232074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting Redox-Complementary Peptide/Polyoxometalate Coacervates for Spontaneously Curing into Antimicrobial Adhesives.
    Liu X; Ma Z; Nie J; Fang J; Li W
    Biomacromolecules; 2022 Mar; 23(3):1009-1019. PubMed ID: 34964608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
    Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C
    Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.