These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36786369)

  • 1. Monolayer α-beryllene as an anode material for magnesium ion batteries with high capacity and low diffusion energy barrier.
    Gao Q; Ye XJ; Liu CS
    Phys Chem Chem Phys; 2023 Feb; 25(8):6519-6526. PubMed ID: 36786369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beryllene: A Promising Anode Material for Na- and K-Ion Batteries with Ultrafast Charge/Discharge and High Specific Capacity.
    Sun M; Yan Y; Schwingenschlögl U
    J Phys Chem Lett; 2020 Nov; 11(21):9051-9056. PubMed ID: 33044084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesene: a theoretical prediction of a metallic, fast, high-capacity, and reversible anode material for sodium-ion batteries.
    Ye XJ; Li TK; He JJ; Wang XF; Liu CS
    Nanoscale; 2022 Apr; 14(16):6118-6125. PubMed ID: 35388866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic VS
    Liu B; Gao T; Liao P; Wen Y; Yao M; Shi S; Zhang W
    Phys Chem Chem Phys; 2021 Sep; 23(34):18784-18793. PubMed ID: 34612417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigation of a tetrazine based covalent organic framework as a promising anode material for sodium/calcium ion batteries.
    Das P; Ball B; Sarkar P
    Phys Chem Chem Phys; 2022 Sep; 24(36):21729-21739. PubMed ID: 36082794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory.
    Benzidi H; Lakhal M; Garara M; Abdellaoui M; Benyoussef A; El Kenz A; Mounkachi O
    Phys Chem Chem Phys; 2019 Sep; 21(36):19951-19962. PubMed ID: 31475997
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Singh T; Choudhuri JR; Rana MK
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36240696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Borophosphene as a promising Dirac anode with large capacity and high-rate capability for sodium-ion batteries.
    Zhang Y; Zhang EH; Xia MG; Zhang SL
    Phys Chem Chem Phys; 2020 Sep; 22(36):20851-20857. PubMed ID: 32914819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion.
    Ye XJ; Zhu GL; Meng L; Guo YD; Liu CS
    Phys Chem Chem Phys; 2021 Jun; 23(21):12371-12375. PubMed ID: 34027526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A first-principles study of the BC
    Ye XJ; Zhao R; Xiong X; Wang XH; Liu CS
    Phys Chem Chem Phys; 2024 Apr; 26(15):11738-11745. PubMed ID: 38563831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study.
    Lv X; Li F; Gong J; Gu J; Lin S; Chen Z
    Phys Chem Chem Phys; 2020 Apr; 22(16):8902-8912. PubMed ID: 32289818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries.
    Yadav K; Ray N
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37337-37343. PubMed ID: 37503806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. B
    Wang D; Yang Z; Li W; Zhang J
    Phys Chem Chem Phys; 2023 Sep; 25(36):24468-24474. PubMed ID: 37655746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study.
    Wu P; Li P; Huang M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries.
    Han X; Liu C; Sun J; Sendek AD; Yang W
    RSC Adv; 2018 Feb; 8(13):7196-7204. PubMed ID: 35540316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of SnS
    Kang X; Xu W; Duan X
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34826831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sc
    Lv X; Wei W; Sun Q; Yu L; Huang B; Dai Y
    Chemphyschem; 2017 Jun; 18(12):1627-1634. PubMed ID: 28383808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Two-Dimensional TiClO as a High-Performance Anode Material for Mg-Ion Batteries: A First-Principles Study.
    Zhang S; Liu C
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries.
    Khossossi N; Banerjee A; Benhouria Y; Essaoudi I; Ainane A; Ahuja R
    Phys Chem Chem Phys; 2019 Aug; 21(33):18328-18337. PubMed ID: 31397457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LC
    Cai Y; Wei Y; Lv C; Zhang L; Chen Y
    Phys Chem Chem Phys; 2023 Jul; 25(28):19239-19244. PubMed ID: 37431775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.