BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36786685)

  • 1. Automated cellular stimulation with integrated pneumatic valves and fluidic capacitors.
    Adeoye DI; Wang Y; Davis JJ; Roper MG
    Analyst; 2023 Mar; 148(6):1227-1234. PubMed ID: 36786685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet.
    Quintard C; Tubbs E; Achard JL; Navarro F; Gidrol X; Fouillet Y
    Biosens Bioelectron; 2022 Apr; 202():113967. PubMed ID: 35065480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated perfusion and separation systems for entrainment of insulin secretion from islets of Langerhans.
    Yi L; Wang X; Dhumpa R; Schrell AM; Mukhitov N; Roper MG
    Lab Chip; 2015 Feb; 15(3):823-32. PubMed ID: 25474044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfusion and chemical monitoring of living cells on a microfluidic chip.
    Shackman JG; Dahlgren GM; Peters JL; Kennedy RT
    Lab Chip; 2005 Jan; 5(1):56-63. PubMed ID: 15616741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device.
    Lomasney AR; Yi L; Roper MG
    Anal Chem; 2013 Aug; 85(16):7919-25. PubMed ID: 23848226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passively operated microfluidic device for stimulation and secretion sampling of single pancreatic islets.
    Godwin LA; Pilkerton ME; Deal KS; Wanders D; Judd RL; Easley CJ
    Anal Chem; 2011 Sep; 83(18):7166-72. PubMed ID: 21806019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-to-layer parallel fluidic transportation system by addressable fluidic gate arrays.
    Morimoto T; Konishi S
    Lab Chip; 2008 Sep; 8(9):1552-6. PubMed ID: 18818812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions.
    Lu S; Dugan CE; Kennedy RT
    Anal Chem; 2018 Apr; 90(8):5171-5178. PubMed ID: 29578696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Ibrahim F; Harun SW; Kazemzadeh A; Rothan HA; Yusof R; Madou M
    Lab Chip; 2015 Aug; 15(16):3358-69. PubMed ID: 26158597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.
    Rhee M; Burns MA
    Lab Chip; 2009 Nov; 9(21):3131-43. PubMed ID: 19823730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.
    Christoforidis T; Werner EM; Hui EE; Eddington DT
    Biomed Microdevices; 2016 Aug; 18(4):74. PubMed ID: 27469475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online fluorescence anisotropy immunoassay for monitoring insulin secretion from islets of Langerhans.
    Schrell AM; Mukhitov N; Yi L; Adablah JE; Menezes J; Roper MG
    Anal Methods; 2017 Jan; 9(1):38-45. PubMed ID: 28458724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing insulin measurement throughput by fluorescence anisotropy imaging immunoassays.
    Wang Y; Adeoye DI; Wang YJ; Roper MG
    Anal Chim Acta; 2022 Jun; 1212():339942. PubMed ID: 35623790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic prevention of bubble formation and accumulation for long-term culture of pancreatic islet cells in microfluidic device.
    Wang Y; Lee D; Zhang L; Jeon H; Mendoza-Elias JE; Harvat TA; Hassan SZ; Zhou A; Eddington DT; Oberholzer J
    Biomed Microdevices; 2012 Apr; 14(2):419-26. PubMed ID: 22252566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-parametric islet perifusion system within a microfluidic perifusion device.
    Adewola AF; Wang Y; Harvat T; Eddington DT; Lee D; Oberholzer J
    J Vis Exp; 2010 Jan; (35):. PubMed ID: 20104201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.
    Weng KY; Chou NJ; Cheng JW
    Lab Chip; 2008 Jul; 8(7):1216-9. PubMed ID: 18584101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of sequential fluid delivery in a fully autonomous capillary microfluidic device.
    Novo P; Volpetti F; Chu V; Conde JP
    Lab Chip; 2013 Feb; 13(4):641-5. PubMed ID: 23263650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centrifugo-pneumatic multi-liquid aliquoting - parallel aliquoting and combination of multiple liquids in centrifugal microfluidics.
    Schwemmer F; Hutzenlaub T; Buselmeier D; Paust N; von Stetten F; Mark D; Zengerle R; Kosse D
    Lab Chip; 2015 Aug; 15(15):3250-8. PubMed ID: 26138211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully integrated miniature device for automated gene expression DNA microarray processing.
    Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A
    Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.