These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36786770)

  • 1. Understanding the Proteomes of Plant Development and Stress Responses in
    Yadav BG; Aakanksha ; Kumar R; Yadava SK; Kumar A; Ramchiary N
    J Proteome Res; 2023 Mar; 22(3):660-680. PubMed ID: 36786770
    [No Abstract]   [Full Text] [Related]  

  • 2. Plant proteomic research for improvement of food crops under stresses: a review.
    Mustafa G; Komatsu S
    Mol Omics; 2021 Dec; 17(6):860-880. PubMed ID: 34870299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.
    Kosová K; Vítámvás P; Urban MO; Klíma M; Roy A; Prášil IT
    Int J Mol Sci; 2015 Sep; 16(9):20913-42. PubMed ID: 26340626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics in commercial crops: An overview.
    Tan BC; Lim YS; Lau SE
    J Proteomics; 2017 Oct; 169():176-188. PubMed ID: 28546092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses.
    Mangal V; Lal MK; Tiwari RK; Altaf MA; Sood S; Gahlaut V; Bhatt A; Thakur AK; Kumar R; Bhardwaj V; Kumar V; Singh B; Singh R; Kumar D
    Planta; 2023 Mar; 257(4):80. PubMed ID: 36913037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics for abiotic stresses in legumes: present status and future directions.
    Jan N; Rather AM; John R; Chaturvedi P; Ghatak A; Weckwerth W; Zargar SM; Mir RA; Khan MA; Mir RR
    Crit Rev Biotechnol; 2023 Mar; 43(2):171-190. PubMed ID: 35109728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive update on Capsicum proteomics: Advances and future prospects.
    Momo J; Kumar A; Islam K; Ahmad I; Rawoof A; Ramchiary N
    J Proteomics; 2022 Jun; 261():104578. PubMed ID: 35398364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.
    Zhou M; Sun G; Sun Z; Tang Y; Wu Y
    J Proteomics; 2014 Jun; 105():74-84. PubMed ID: 24680693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops.
    Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS
    Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf Apoplast of Field-Grown Potato Analyzed by Quantitative Proteomics and Activity-Based Protein Profiling.
    Abreha KB; Alexandersson E; Resjö S; Lankinen Å; Sueldo D; Kaschani F; Kaiser M; van der Hoorn RAL; Levander F; Andreasson E
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.
    Kayum MA; Jung HJ; Park JI; Ahmed NU; Saha G; Yang TJ; Nou IS
    Mol Genet Genomics; 2015 Feb; 290(1):79-95. PubMed ID: 25149146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omics: The way forward to enhance abiotic stress tolerance in
    Raza A; Razzaq A; Mehmood SS; Hussain MA; Wei S; He H; Zaman QU; Xuekun Z; Hasanuzzaman M
    GM Crops Food; 2021 Jan; 12(1):251-281. PubMed ID: 33464960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop proteomics: aim at sustainable agriculture of tomorrow.
    Salekdeh GH; Komatsu S
    Proteomics; 2007 Aug; 7(16):2976-96. PubMed ID: 17639607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update.
    Sharma JK; Sihmar M; Santal AR; Singh NP
    Biotechnol Genet Eng Rev; 2019 Oct; 35(2):126-160. PubMed ID: 31478455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics techniques for the development of flood tolerant crops.
    Komatsu S; Hiraga S; Yanagawa Y
    J Proteome Res; 2012 Jan; 11(1):68-78. PubMed ID: 22029422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops.
    Ahmed W; Xia Y; Li R; Bai G; Siddique KHM; Guo P
    Genomics; 2020 Mar; 112(2):1419-1424. PubMed ID: 31430515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.