BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 36786912)

  • 1. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective.
    Zhao Y; Liu X; Yang G
    Mol Neurobiol; 2023 Jun; 60(6):3054-3070. PubMed ID: 36786912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson's disease and its treatment.
    Borroto-Escuela DO; Fuxe K
    J Neural Transm (Vienna); 2019 Apr; 126(4):455-471. PubMed ID: 30637481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of adenosine receptors with other receptors from therapeutic perspective in Parkinson's disease.
    Morin N; Di Paolo T
    Int Rev Neurobiol; 2014; 119():151-67. PubMed ID: 25175965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can adenosine A
    Kanda T; Jenner P
    Parkinsonism Relat Disord; 2020 Nov; 80 Suppl 1():S21-S27. PubMed ID: 33349576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why target brain adenosine receptors? A historical perspective.
    Fredholm BB; Svenningsson P
    Parkinsonism Relat Disord; 2020 Nov; 80 Suppl 1():S3-S6. PubMed ID: 33349578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current and experimental treatments of Parkinson disease: A guide for neuroscientists.
    Oertel W; Schulz JB
    J Neurochem; 2016 Oct; 139 Suppl 1():325-337. PubMed ID: 27577098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. l-3,4-dihydroxyphenylalanine (l-DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha-synuclein mouse models of Parkinson's disease.
    Billings JL; Gordon SL; Rawling T; Doble PA; Bush AI; Adlard PA; Finkelstein DI; Hare DJ
    J Neurochem; 2019 Jul; 150(1):88-106. PubMed ID: 30716176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine A1 receptor stimulation reduces D1 receptor-mediated GABAergic transmission from striato-nigral terminals and attenuates l-DOPA-induced dyskinesia in dopamine-denervated mice.
    Mango D; Bonito-Oliva A; Ledonne A; Cappellacci L; Petrelli R; Nisticò R; Berretta N; Fisone G; Mercuri NB
    Exp Neurol; 2014 Nov; 261():733-43. PubMed ID: 25173217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease.
    Jones-Tabah J
    J Mol Biol; 2023 Jun; 435(12):167927. PubMed ID: 36563742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered adenosine 2A and dopamine D2 receptor availability in the 6-hydroxydopamine-treated rats with and without levodopa-induced dyskinesia.
    Zhou X; Doorduin J; Elsinga PH; Dierckx RAJO; de Vries EFJ; Casteels C
    Neuroimage; 2017 Aug; 157():209-218. PubMed ID: 28583881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parkinson's disease--opportunities for novel therapeutics to reduce the problems of levodopa therapy.
    Fox SH; Chuang R; Brotchie JM
    Prog Brain Res; 2008; 172():479-94. PubMed ID: 18772047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine receptors and dyskinesia in pathophysiology.
    Tomiyama M
    Int Rev Neurobiol; 2014; 119():117-26. PubMed ID: 25175963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-dopaminergic treatments for motor control in Parkinson's disease.
    Fox SH
    Drugs; 2013 Sep; 73(13):1405-15. PubMed ID: 23917951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach.
    Alam MR; Singh S
    Inflammopharmacology; 2023 Aug; 31(4):1605-1627. PubMed ID: 37318694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting β-arrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson's disease.
    Urs NM; Bido S; Peterson SM; Daigle TL; Bass CE; Gainetdinov RR; Bezard E; Caron MG
    Proc Natl Acad Sci U S A; 2015 May; 112(19):E2517-26. PubMed ID: 25918399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Levodopa Therapy for Parkinson's Disease: History, Current Status and Perspectives.
    Bogetofte H; Alamyar A; Blaabjerg M; Meyer M
    CNS Neurol Disord Drug Targets; 2020; 19(8):572-583. PubMed ID: 32703142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrospinal fluid levels of catecholamines and its metabolites in Parkinson's disease: effect of l-DOPA treatment and changes in levodopa-induced dyskinesia.
    Andersen AD; Blaabjerg M; Binzer M; Kamal A; Thagesen H; Kjaer TW; Stenager E; Gramsbergen JBP
    J Neurochem; 2017 May; 141(4):614-625. PubMed ID: 28244186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The adenosine A(2A) receptor as an attractive target for Parkinson's disease treatment.
    Chen JF
    Drug News Perspect; 2003 Nov; 16(9):597-604. PubMed ID: 14702141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of Parkinson's disease: levodopa as the first choice.
    Katzenschlager R; Lees AJ
    J Neurol; 2002 Sep; 249 Suppl 2():II19-24. PubMed ID: 12375059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease.
    Li H; Zeng F; Huang C; Pu Q; Thomas ER; Chen Y; Li X
    CNS Neurosci Ther; 2024 Feb; 30(2):e14411. PubMed ID: 37577934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.