BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36786915)

  • 41. Biosynthesis of Chondroitin in Engineered
    Cheng F; Luozhong S; Yu H; Guo Z
    J Microbiol Biotechnol; 2019 Mar; 29(3):392-400. PubMed ID: 30691254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production.
    Wei L; Wang H; Xu N; Zhou W; Ju J; Liu J; Ma Y
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1325-1338. PubMed ID: 30564850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiological Response of
    Walter T; Veldmann KH; Götker S; Busche T; Rückert C; Kashkooli AB; Paulus J; Cankar K; Wendisch VF
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33302489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range.
    Choi JW; Yim SS; Lee SH; Kang TJ; Park SJ; Jeong KJ
    Microb Cell Fact; 2015 Feb; 14():21. PubMed ID: 25886194
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
    Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q
    Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis.
    Yoshida Y; Sasaki T; Ito S; Tamura H; Kunimatsu K; Kato H
    Microbiology (Reading); 2009 Mar; 155(Pt 3):968-978. PubMed ID: 19246767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering.
    Wang JY; Rao ZM; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9153-9166. PubMed ID: 34837493
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production.
    Zha J; Zang Y; Mattozzi M; Plassmeier J; Gupta M; Wu X; Clarkson S; Koffas MAG
    Microb Cell Fact; 2018 Sep; 17(1):143. PubMed ID: 30217197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum.
    Labib M; Görtz J; Brüsseler C; Kallscheuer N; Gätgens J; Jupke A; Marienhagen J; Noack S
    Biotechnol Bioeng; 2021 Nov; 118(11):4414-4427. PubMed ID: 34343343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic engineering of Corynebacterium glutamicum for the production of anthranilate from glucose and xylose.
    Mutz M; Brüning V; Brüsseler C; Müller MF; Noack S; Marienhagen J
    Microb Biotechnol; 2024 Jan; 17(1):e14388. PubMed ID: 38206123
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Remodeling metabolism of Corynebacterium glutamicum for high-level dencichine production.
    Huang D; Wang X; Liu WB; Ye BC
    Bioresour Technol; 2023 Nov; 388():129800. PubMed ID: 37748563
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Industrial production of L-lysine in Corynebacterium glutamicum: Progress and prospects.
    Liu J; Xu JZ; Rao ZM; Zhang WG
    Microbiol Res; 2022 Sep; 262():127101. PubMed ID: 35803058
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp. lactofermentum.
    Shi F; Zhang S; Li Y; Lu Z
    Appl Microbiol Biotechnol; 2019 May; 103(10):4113-4124. PubMed ID: 30953121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. De novo biosynthesis of 2'-fucosyllactose by bioengineered Corynebacterium glutamicum.
    Lee YG; Jo HY; Lee DH; Yoon JW; Song YH; Kweon DH; Kim KH; Park YC; Seo JH
    Biotechnol J; 2024 Jan; 19(1):e2300461. PubMed ID: 37968827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum.
    Xu JZ; Wu ZH; Gao SJ; Zhang W
    Microb Cell Fact; 2018 Jul; 17(1):105. PubMed ID: 29981572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine.
    Jiang LY; Chen SG; Zhang YY; Liu JZ
    BMC Biotechnol; 2013 Jun; 13():47. PubMed ID: 23725060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid.
    Pauli S; Kohlstedt M; Lamber J; Weiland F; Becker J; Wittmann C
    Metab Eng; 2023 May; 77():100-117. PubMed ID: 36931556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.