These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 36787053)
1. Effects of combinations of gapmer antisense oligonucleotides on the target reduction. Yanagidaira M; Yoshioka K; Nagata T; Nakao S; Miyata K; Yokota T Mol Biol Rep; 2023 Apr; 50(4):3539-3546. PubMed ID: 36787053 [TBL] [Abstract][Full Text] [Related]
2. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides. Scharner J; Ma WK; Zhang Q; Lin KT; Rigo F; Bennett CF; Krainer AR Nucleic Acids Res; 2020 Jan; 48(2):802-816. PubMed ID: 31802121 [TBL] [Abstract][Full Text] [Related]
3. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides. Hori SI; Mitsuoka Y; Kugimiya A Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397 [TBL] [Abstract][Full Text] [Related]
4. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Ward AJ; Norrbom M; Chun S; Bennett CF; Rigo F Nucleic Acids Res; 2014 May; 42(9):5871-9. PubMed ID: 24589581 [TBL] [Abstract][Full Text] [Related]
5. Reduction of Off-Target Effects of Gapmer Antisense Oligonucleotides by Oligonucleotide Extension. Yasuhara H; Yoshida T; Sasaki K; Obika S; Inoue T Mol Diagn Ther; 2022 Jan; 26(1):117-127. PubMed ID: 34994962 [TBL] [Abstract][Full Text] [Related]
6. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Liang XH; Sun H; Nichols JG; Crooke ST Mol Ther; 2017 Sep; 25(9):2075-2092. PubMed ID: 28663102 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the effect of 2'-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice. Prakash TP; Yu J; Kinberger GA; Low A; Jackson M; Rigo F; Swayze EE; Seth PP Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3774-3779. PubMed ID: 30342955 [TBL] [Abstract][Full Text] [Related]
8. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810 [TBL] [Abstract][Full Text] [Related]
9. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. Vickers TA; Crooke ST PLoS One; 2014; 9(10):e108625. PubMed ID: 25299183 [TBL] [Abstract][Full Text] [Related]
10. The Combination of Mesyl-Phosphoramidate Inter-Nucleotide Linkages and 2'- Zhang L; Liang XH; De Hoyos CL; Migawa M; Nichols JG; Freestone G; Tian J; Seth PP; Crooke ST Nucleic Acid Ther; 2022 Oct; 32(5):401-411. PubMed ID: 35861704 [TBL] [Abstract][Full Text] [Related]
11. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. The most effective target sites are clustered in double-stranded regions of the predicted secondary structure for the mRNA. Laptev AV; Lu Z; Colige A; Prockop DJ Biochemistry; 1994 Sep; 33(36):11033-9. PubMed ID: 8086420 [TBL] [Abstract][Full Text] [Related]
12. High Concentration or Combined Treatment of Antisense Oligonucleotides for Spinal Muscular Atrophy Perturbed Wijaya YOS; Niba ETE; Nishio H; Okamoto K; Awano H; Saito T; Takeshima Y; Shinohara M Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456491 [TBL] [Abstract][Full Text] [Related]
13. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences. Yoshida T; Naito Y; Sasaki K; Uchida E; Sato Y; Naito M; Kawanishi T; Obika S; Inoue T Genes Cells; 2018 Jun; 23(6):448-455. PubMed ID: 29667281 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells. Yoshida T; Naito Y; Yasuhara H; Sasaki K; Kawaji H; Kawai J; Naito M; Okuda H; Obika S; Inoue T Genes Cells; 2019 Dec; 24(12):827-835. PubMed ID: 31637814 [TBL] [Abstract][Full Text] [Related]
15. Repair of aberrant splicing in growth hormone receptor by antisense oligonucleotides targeting the splice sites of a pseudoexon. David A; Srirangalingam U; Metherell LA; Khoo B; Clark AJ J Clin Endocrinol Metab; 2010 Jul; 95(7):3542-6. PubMed ID: 20427506 [TBL] [Abstract][Full Text] [Related]
17. NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides. Zhang L; Bernardo KD; Vickers TA; Tian J; Liang XH; Crooke ST Nucleic Acid Ther; 2022 Aug; 32(4):280-299. PubMed ID: 35852833 [TBL] [Abstract][Full Text] [Related]
18. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity. Kashyap AS; Thelemann T; Klar R; Kallert SM; Festag J; Buchi M; Hinterwimmer L; Schell M; Michel S; Jaschinski F; Zippelius A J Immunother Cancer; 2019 Mar; 7(1):67. PubMed ID: 30871609 [TBL] [Abstract][Full Text] [Related]
19. A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides. Sun Y; Duan M; Lin R; Wang D; Li C; Bo X; Wang S Mol Vis; 2006 Nov; 12():1364-71. PubMed ID: 17149362 [TBL] [Abstract][Full Text] [Related]
20. Rational Design of Chimeric Antisense Oligonucleotides on a Mixed PO-PS Backbone for Splice-Switching Applications. Le BT; Chen S; Veedu RN Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]