These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36787424)
1. New Target Gene Screening Using Shortened and Random sgRNA Libraries in Microbial CRISPR Interference. Jeong SH; Kim HJ; Lee SJ ACS Synth Biol; 2023 Mar; 12(3):800-808. PubMed ID: 36787424 [TBL] [Abstract][Full Text] [Related]
2. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli. Byun G; Yang J; Seo SW Nucleic Acids Res; 2023 May; 51(9):4650-4659. PubMed ID: 36999618 [TBL] [Abstract][Full Text] [Related]
3. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. Replogle JM; Bonnar JL; Pogson AN; Liem CR; Maier NK; Ding Y; Russell BJ; Wang X; Leng K; Guna A; Norman TM; Pak RA; Ramos DM; Ward ME; Gilbert LA; Kampmann M; Weissman JS; Jost M Elife; 2022 Dec; 11():. PubMed ID: 36576240 [TBL] [Abstract][Full Text] [Related]
4. CRISPRi-Driven Genetic Screening for Designing Novel Microbial Phenotypes. Kang M; Kim K; Cho BK Methods Mol Biol; 2024; 2760():117-132. PubMed ID: 38468085 [TBL] [Abstract][Full Text] [Related]
5. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference. Kim B; Kim HJ; Lee SJ J Microbiol Biotechnol; 2020 Dec; 30(12):1919-1926. PubMed ID: 32958732 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional Knockdown in Pneumococci Using CRISPR Interference. Kjos M Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208 [TBL] [Abstract][Full Text] [Related]
7. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile. Müh U; Pannullo AG; Weiss DS; Ellermeier CD J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377 [TBL] [Abstract][Full Text] [Related]
8. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Park J; Shin H; Lee SM; Um Y; Woo HM Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926 [TBL] [Abstract][Full Text] [Related]
10. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. Prykhozhij SV; Rajan V; Gaston D; Berman JN PLoS One; 2015; 10(3):e0119372. PubMed ID: 25742428 [TBL] [Abstract][Full Text] [Related]
11. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System. Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834 [TBL] [Abstract][Full Text] [Related]
12. A dose-response model for statistical analysis of chemical genetic interactions in CRISPRi screens. Choudhery S; DeJesus MA; Srinivasan A; Rock J; Schnappinger D; Ioerger TR PLoS Comput Biol; 2024 May; 20(5):e1011408. PubMed ID: 38768228 [TBL] [Abstract][Full Text] [Related]
13. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887 [TBL] [Abstract][Full Text] [Related]
14. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi. Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762 [TBL] [Abstract][Full Text] [Related]
15. CRISPR interference and its applications. Ghavami S; Pandi A Prog Mol Biol Transl Sci; 2021; 180():123-140. PubMed ID: 33934834 [TBL] [Abstract][Full Text] [Related]
16. [Levels of sgRNA as a Major Factor Affecting CRISPRi Knockdown Efficiency in K562 Cells]. Wang Y; Xie Y; Dong ZC; Jiang XJ; Gong P; Lu J; Wan F Mol Biol (Mosk); 2021; 55(1):86-95. PubMed ID: 33566028 [TBL] [Abstract][Full Text] [Related]
17. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli. Tian T; Kang JW; Kang A; Lee TS ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833 [TBL] [Abstract][Full Text] [Related]
18. Development of CRISPR Interference (CRISPRi) Platform for Metabolic Engineering of Son J; Jang SH; Cha JW; Jeong KJ Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32764465 [No Abstract] [Full Text] [Related]
19. Transcriptional repression of endogenous genes in BmE cells using CRISPRi system. Wang X; Ma S; Liu Y; Lu W; Sun L; Zhao P; Xia Q Insect Biochem Mol Biol; 2019 Aug; 111():103172. PubMed ID: 31103783 [TBL] [Abstract][Full Text] [Related]
20. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency. Hiranniramol K; Chen Y; Liu W; Wang X Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]