These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 3678751)
1. Gas-chromatographic and mass-spectrometric analysis of the odor of human feces. Moore JG; Jessop LD; Osborne DN Gastroenterology; 1987 Dec; 93(6):1321-9. PubMed ID: 3678751 [TBL] [Abstract][Full Text] [Related]
2. The impact of supplemental dietary methionine sources on volatile compound concentrations in broiler excreta. Chavez C; Coufal CD; Carey JB; Lacey RE; Beier RC; Zahn JA Poult Sci; 2004 Jun; 83(6):901-10. PubMed ID: 15206616 [TBL] [Abstract][Full Text] [Related]
3. Detection of odorous compounds in breath. Van den Velde S; van Steenberghe D; Van Hee P; Quirynen M J Dent Res; 2009 Mar; 88(3):285-9. PubMed ID: 19329466 [TBL] [Abstract][Full Text] [Related]
4. Volatile sulfur compounds responsible for an offensive odor of the flat-head, Calliurichthys doryssus. Shiomi K; Noguchi A; Yamanaka H; Kikuchi T; Iida H Comp Biochem Physiol B; 1982; 71(1):29-31. PubMed ID: 7060356 [TBL] [Abstract][Full Text] [Related]
5. Quantification of trace volatile sulfur compounds in milk by solid-phase microextraction and gas chromatography-pulsed flame photometric detection. Vazquez-Landaverde PA; Torres JA; Qian MC J Dairy Sci; 2006 Aug; 89(8):2919-27. PubMed ID: 16840607 [TBL] [Abstract][Full Text] [Related]
6. Identification of odorous compounds in reclaimed water using FPA combined with sensory GC-MS. Yan Z; Zhang Y; Yu J; Yuan H; Yang M J Environ Sci (China); 2011; 23(10):1600-4. PubMed ID: 22432253 [TBL] [Abstract][Full Text] [Related]
7. Identification of distinctive volatile compounds in fish sauce. Fukami K; Ishiyama S; Yaguramaki H; Masuzawa T; Nabeta Y; Endo K; Shimoda M J Agric Food Chem; 2002 Sep; 50(19):5412-6. PubMed ID: 12207484 [TBL] [Abstract][Full Text] [Related]
8. Production and origin of oral malodor: a review of mechanisms and methods of analysis. Tonzetich J J Periodontol; 1977 Jan; 48(1):13-20. PubMed ID: 264535 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of putative precursors of key 'reductive' compounds in wines post-bottling. Bekker MZ; Wilkes EN; Smith PA Food Chem; 2018 Apr; 245():676-686. PubMed ID: 29287425 [TBL] [Abstract][Full Text] [Related]
10. Study on the organoleptic intensity scale for measuring oral malodor. Greenman J; Duffield J; Spencer P; Rosenberg M; Corry D; Saad S; Lenton P; Majerus G; Nachnani S; El-Maaytah M J Dent Res; 2004 Jan; 83(1):81-5. PubMed ID: 14691119 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of bioscrubber and biofilter technologies treating wastewater foul air by a new approach of using odor character, odor intensity, and chemical analyses. Vitko TG; Cowden S; Suffet IHM Water Res; 2022 Jul; 220():118691. PubMed ID: 35691191 [TBL] [Abstract][Full Text] [Related]
13. An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine. Wen Y; Lopez R; Ferreira V J Chromatogr A; 2018 Jan; 1534():130-138. PubMed ID: 29306634 [TBL] [Abstract][Full Text] [Related]
14. Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection. Mahattanatawee K; Perez-Cacho PR; Davenport T; Rouseff R J Agric Food Chem; 2007 Mar; 55(5):1939-44. PubMed ID: 17266328 [TBL] [Abstract][Full Text] [Related]
15. Quantitative and qualitative analysis of industrial odors with human observers. Berglund B Ann N Y Acad Sci; 1974 Sep; 237(0):35-51. PubMed ID: 4529546 [No Abstract] [Full Text] [Related]
16. The averaging effect of odorant mixing as determined by air dilution sensory tests: a case study on reduced sulfur compounds. Kim KH Sensors (Basel); 2011; 11(2):1405-17. PubMed ID: 22319360 [TBL] [Abstract][Full Text] [Related]
17. Identification and quantification of nuisance odors at a trash transfer station. Curren J; Hallis SA; Snyder CCL; Suffet IMH Waste Manag; 2016 Dec; 58():52-61. PubMed ID: 27692531 [TBL] [Abstract][Full Text] [Related]
18. Prioritisation of odorants emitted from sewers using odour activity values. Sivret EC; Wang B; Parcsi G; Stuetz RM Water Res; 2016 Jan; 88():308-321. PubMed ID: 26512809 [TBL] [Abstract][Full Text] [Related]
19. Fecal hydrogen sulfide production in ulcerative colitis. Levine J; Ellis CJ; Furne JK; Springfield J; Levitt MD Am J Gastroenterol; 1998 Jan; 93(1):83-7. PubMed ID: 9448181 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous quantification of fifty-one odor-causing compounds in drinking water using gas chromatography-triple quadrupole tandem mass spectrometry. Wang C; Yu J; Guo Q; Zhao Y; Cao N; Yu Z; Yang M J Environ Sci (China); 2019 May; 79():100-110. PubMed ID: 30784435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]