These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36787638)

  • 1. Temperature dependence of adhesion properties at liquid-aluminum/solid interfaces.
    Wu J; Rui Z; Wang Z; Dong Y
    J Phys Condens Matter; 2023 Feb; 35(16):. PubMed ID: 36787638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Young's Equation for a Two-Liquid System on the Nanometer Scale.
    Fernandez-Toledano JC; Blake TD; De Coninck J
    Langmuir; 2017 Mar; 33(11):2929-2938. PubMed ID: 28248509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations.
    Guan C; Lv X; Han Z; Chen C
    Phys Chem Chem Phys; 2020 Jan; 22(4):2361-2371. PubMed ID: 31934698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface.
    Surblys D; Leroy F; Yamaguchi Y; Müller-Plathe F
    J Chem Phys; 2018 Apr; 148(13):134707. PubMed ID: 29626889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Evolution of Nano-Structures at the Al-Cu Interface and the Influence of Annealing Temperature on the Interfacial Strength.
    Wang X; Cheng G; Zhang Y; Wang Y; Liao W; Venkatesh TA
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-Solid Nanofriction and Interfacial Wetting.
    An R; Huang L; Long Y; Kalanyan B; Lu X; Gubbins KE
    Langmuir; 2016 Jan; 32(3):743-50. PubMed ID: 26716469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport mechanism at a solid-liquid interface based on the heat flux detected at a subatomic spatial resolution.
    Fujiwara K; Shibahara M
    Phys Rev E; 2022 Mar; 105(3-1):034803. PubMed ID: 35428048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion at solid/liquid interfaces: flowing hexadecane on functionalized surfaces.
    Gutfreund P; Wolff M; Maccarini M; Gerth S; Ankner JF; Browning J; Halbert CE; Wacklin H; Zabel H
    J Chem Phys; 2011 Feb; 134(6):064711. PubMed ID: 21322725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically abrupt liquid-oxide interface stabilized by self-regulated interfacial defects: the case of Al/Al2O3 interfaces.
    Kang J; Zhu J; Curtis C; Blake D; Glatzmaier G; Kim YH; Wei SH
    Phys Rev Lett; 2012 Jun; 108(22):226105. PubMed ID: 23003629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordered liquid aluminum at the interface with sapphire.
    Oh SH; Kauffmann Y; Scheu C; Kaplan WD; Rühle M
    Science; 2005 Oct; 310(5748):661-3. PubMed ID: 16210498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid.
    Yamaguchi Y; Kusudo H; Surblys D; Omori T; Kikugawa G
    J Chem Phys; 2019 Jan; 150(4):044701. PubMed ID: 30709259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport across flat and curved gold-water interfaces: Assessing the effects of the interfacial modeling parameters.
    Paniagua-Guerra LE; Ramos-Alvarado B
    J Chem Phys; 2023 Apr; 158(13):134717. PubMed ID: 37031121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-scale thermal manipulation with adsorbed atoms on a solid surface at a liquid-solid interface.
    Fujiwara K; Shibahara M
    Sci Rep; 2019 Sep; 9(1):13202. PubMed ID: 31519938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.
    Lee HY; Shen TH; Hu CY; Tsai YY; Wen CY
    Nano Lett; 2017 Dec; 17(12):7494-7499. PubMed ID: 29185770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the cohesion of fluids and their adhesion to solids: Young's equation at the atomic scale.
    Fernandez-Toledano JC; Blake TD; Lambert P; De Coninck J
    Adv Colloid Interface Sci; 2017 Jul; 245():102-107. PubMed ID: 28457500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Aluminum Ions at the Mica Water Interface Links Hydrolysis State-to-Surface Potential and Particle Adhesion.
    Legg BA; Baer MD; Chun J; Schenter GK; Huang S; Zhang Y; Min Y; Mundy CJ; De Yoreo JJ
    J Am Chem Soc; 2020 Apr; 142(13):6093-6102. PubMed ID: 32079390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture.
    Patel HA; Garde S; Keblinski P
    Nano Lett; 2005 Nov; 5(11):2225-31. PubMed ID: 16277458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of isothermal reactions in Al/Ni nanolaminates.
    Smith GD; Bedrov D; Hooper J
    J Chem Phys; 2019 Jun; 150(21):214702. PubMed ID: 31176353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.