These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36787711)
21. Electronic spectra from TDDFT and machine learning in chemical space. Ramakrishnan R; Hartmann M; Tapavicza E; von Lilienfeld OA J Chem Phys; 2015 Aug; 143(8):084111. PubMed ID: 26328822 [TBL] [Abstract][Full Text] [Related]
22. Calibration of Energy-Specific TDDFT for Modeling K-edge XAS Spectra of Light Elements. Lestrange PJ; Nguyen PD; Li X J Chem Theory Comput; 2015 Jul; 11(7):2994-9. PubMed ID: 26575736 [TBL] [Abstract][Full Text] [Related]
23. All-electron real-time and imaginary-time time-dependent density functional theory within a numeric atom-centered basis function framework. Hekele J; Yao Y; Kanai Y; Blum V; Kratzer P J Chem Phys; 2021 Oct; 155(15):154801. PubMed ID: 34686041 [TBL] [Abstract][Full Text] [Related]
24. Time-dependent density functional theory based upon the fragment molecular orbital method. Chiba M; Fedorov DG; Kitaura K J Chem Phys; 2007 Sep; 127(10):104108. PubMed ID: 17867738 [TBL] [Abstract][Full Text] [Related]
25. Performance Analysis and Optimization of Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory (MRSF-TDDFT) for Vertical Excitation Energies and Singlet-Triplet Energy Gaps. Horbatenko Y; Lee S; Filatov M; Choi CH J Phys Chem A; 2019 Sep; 123(37):7991-8000. PubMed ID: 31436418 [TBL] [Abstract][Full Text] [Related]
26. Comparison of Real-Time and Linear-Response Time-Dependent Density Functional Theories for Molecular Chromophores Ranging from Sparse to High Densities of States. Tussupbayev S; Govind N; Lopata K; Cramer CJ J Chem Theory Comput; 2015 Mar; 11(3):1102-9. PubMed ID: 26579760 [TBL] [Abstract][Full Text] [Related]
27. Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals. Imamura Y; Otsuka T; Nakai H J Comput Chem; 2007 Sep; 28(12):2067-74. PubMed ID: 17436256 [TBL] [Abstract][Full Text] [Related]
28. Implementation of energy and gradient for the TDDFT-approximate auxiliary function (aas) method. Wang Y; Havenridge S; Aikens CM J Chem Phys; 2024 Jul; 161(2):. PubMed ID: 38980092 [TBL] [Abstract][Full Text] [Related]
29. On the Performance of Optimally Tuned Range-Separated Hybrid Functionals for X-ray Absorption Modeling. do Couto PC; Hollas D; Slavíček P J Chem Theory Comput; 2015 Jul; 11(7):3234-44. PubMed ID: 26575760 [TBL] [Abstract][Full Text] [Related]
30. Improving the predictive quality of time-dependent density functional theory calculations of the X-ray emission spectroscopy of organic molecules. Fouda AAE; Besley NA J Comput Chem; 2020 Apr; 41(11):1081-1090. PubMed ID: 31965597 [TBL] [Abstract][Full Text] [Related]
31. Performance of TDDFT Vertical Excitation Energies of Core-Substituted Naphthalene Diimides. Narsaria AK; Ruijter JD; Hamlin TA; Ehlers AW; Guerra CF; Lammertsma K; Bickelhaupt FM J Comput Chem; 2020 Jun; 41(15):1448-1455. PubMed ID: 32142173 [TBL] [Abstract][Full Text] [Related]
32. Assessment of Interstate Spin-Orbit Couplings from Linear Response Amplitudes. Dinkelbach F; Kleinschmidt M; Marian CM J Chem Theory Comput; 2017 Feb; 13(2):749-766. PubMed ID: 28045526 [TBL] [Abstract][Full Text] [Related]
33. Time-dependent density functional theory studies of the optical and electronic properties of the [M Orellana C; Miranda-Rojas S; Sundholm D; Mendizabal F Phys Chem Chem Phys; 2022 Oct; 24(39):24457-24468. PubMed ID: 36193576 [TBL] [Abstract][Full Text] [Related]
34. On the performance of DFT/MRCI Hamiltonians for electronic excitations in transition metal complexes: The role of the damping function. Heil A; Kleinschmidt M; Marian CM J Chem Phys; 2018 Oct; 149(16):164106. PubMed ID: 30384728 [TBL] [Abstract][Full Text] [Related]
35. Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. Rappoport D; Furche F J Chem Phys; 2005 Feb; 122(6):064105. PubMed ID: 15740365 [TBL] [Abstract][Full Text] [Related]
36. Density functional calculations of the vibronic structure of electronic absorption spectra. Dierksen M; Grimme S J Chem Phys; 2004 Feb; 120(8):3544-54. PubMed ID: 15268516 [TBL] [Abstract][Full Text] [Related]
37. Natural Charge-Transfer Analysis: Eliminating Spurious Charge-Transfer States in Time-Dependent Density Functional Theory via Diabatization, with Application to Projection-Based Embedding. Carter-Fenk K; Mundy CJ; Herbert JM J Chem Theory Comput; 2021 Jul; 17(7):4195-4210. PubMed ID: 34189922 [TBL] [Abstract][Full Text] [Related]
38. Development of a TDDFT-Based Protocol with Local Hybrid Functionals for the Screening of Potential Singlet Fission Chromophores. Grotjahn R; Maier TM; Michl J; Kaupp M J Chem Theory Comput; 2017 Oct; 13(10):4984-4996. PubMed ID: 28862856 [TBL] [Abstract][Full Text] [Related]
39. Assessing Excited State Methods by Adiabatic Excitation Energies. Send R; Kühn M; Furche F J Chem Theory Comput; 2011 Aug; 7(8):2376-86. PubMed ID: 26606613 [TBL] [Abstract][Full Text] [Related]
40. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange. Heßelmann A J Chem Theory Comput; 2015 Apr; 11(4):1607-20. PubMed ID: 26574370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]