BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36787747)

  • 1. Complex macroevolution of pterosaurs.
    Yu Y; Zhang C; Xu X
    Curr Biol; 2023 Feb; 33(4):770-779.e4. PubMed ID: 36787747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The shape of pterosaur evolution: evidence from the fossil record.
    Dyke GJ; McGowan AJ; Nudds RL; Smith D
    J Evol Biol; 2009 Apr; 22(4):890-8. PubMed ID: 19210587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.
    Slack KE; Jones CM; Ando T; Harrison GL; Fordyce RE; Arnason U; Penny D
    Mol Biol Evol; 2006 Jun; 23(6):1144-55. PubMed ID: 16533822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria).
    Foth C; Brusatte SL; Butler RJ
    J Evol Biol; 2012 May; 25(5):904-15. PubMed ID: 22356676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.
    Benson RB; Frigot RA; Goswami A; Andres B; Butler RJ
    Nat Commun; 2014 Apr; 5():3567. PubMed ID: 24694584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep time diversity and the early radiations of birds.
    Yu Y; Zhang C; Xu X
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33619176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 150 million years of sustained increase in pterosaur flight efficiency.
    Venditti C; Baker J; Benton MJ; Meade A; Humphries S
    Nature; 2020 Nov; 587(7832):83-86. PubMed ID: 33116315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness.
    Witton MP; Habib MB
    PLoS One; 2010 Nov; 5(11):e13982. PubMed ID: 21085624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new azhdarchoid pterosaur from the Lower Cretaceous of China and its implications for pterosaur phylogeny and evolution.
    Lü J; Unwin DM; Xu L; Zhang X
    Naturwissenschaften; 2008 Sep; 95(9):891-7. PubMed ID: 18509616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.
    Claessens LP; O'Connor PM; Unwin DM
    PLoS One; 2009; 4(2):e4497. PubMed ID: 19223979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A skeleton from the Middle Jurassic of Scotland illuminates an earlier origin of large pterosaurs.
    Jagielska N; O'Sullivan M; Funston GF; Butler IB; Challands TJ; Clark NDL; Fraser NC; Penny A; Ross DA; Wilkinson M; Brusatte SL
    Curr Biol; 2022 Mar; 32(6):1446-1453.e4. PubMed ID: 35196508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary.
    Longrich NR; Martill DM; Andres B
    PLoS Biol; 2018 Mar; 16(3):e2001663. PubMed ID: 29534059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small azhdarchoid pterosaur from the latest Cretaceous, the age of flying giants.
    Martin-Silverstone E; Witton MP; Arbour VM; Currie PJ
    R Soc Open Sci; 2016 Aug; 3(8):160333. PubMed ID: 27853614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing pterosaur ingroup relationships through broader sampling of avemetatarsalian taxa and characters and a range of phylogenetic analysis techniques.
    Baron MG
    PeerJ; 2020; 8():e9604. PubMed ID: 33005485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A morphospace-based test for competitive exclusion among flying vertebrates: did birds, bats and pterosaurs get in each other's space?
    McGowan AJ; Dyke GJ
    J Evol Biol; 2007 May; 20(3):1230-6. PubMed ID: 17465933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea.
    Zhou CF; Gao KQ; Yi H; Xue J; Li Q; Fox RC
    R Soc Open Sci; 2017 Feb; 4(2):160672. PubMed ID: 28386425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pterosaur melanosomes support signalling functions for early feathers.
    Cincotta A; Nicolaï M; Campos HBN; McNamara M; D'Alba L; Shawkey MD; Kischlat EE; Yans J; Carleer R; Escuillié F; Godefroit P
    Nature; 2022 Apr; 604(7907):684-688. PubMed ID: 35444275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds.
    Benson RB; Choiniere JN
    Proc Biol Sci; 2013 Oct; 280(1768):20131780. PubMed ID: 23945695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scleromochlus and the early evolution of Pterosauromorpha.
    Foffa D; Dunne EM; Nesbitt SJ; Butler RJ; Fraser NC; Brusatte SL; Farnsworth A; Lunt DJ; Valdes PJ; Walsh S; Barrett PM
    Nature; 2022 Oct; 610(7931):313-318. PubMed ID: 36198797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of morphological evolution are heterogeneous in Early Cretaceous birds.
    Wang M; Lloyd GT
    Proc Biol Sci; 2016 Apr; 283(1828):. PubMed ID: 27053742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.