BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 36788308)

  • 1. Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions.
    Stelzner K; Vollmuth N; Rudel T
    Nat Rev Microbiol; 2023 Jul; 21(7):448-462. PubMed ID: 36788308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J
    Microbiol Spectr; 2024 Jul; 12(7):e0045324. PubMed ID: 38814079
    [No Abstract]   [Full Text] [Related]  

  • 3. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis and its interaction with the cellular retromer.
    Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D
    Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection.
    Fischer A; Rudel T
    Curr Top Microbiol Immunol; 2018; 412():81-106. PubMed ID: 27169422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis.
    Yao J; Cherian PT; Frank MW; Rock CO
    J Biol Chem; 2015 Jul; 290(31):18874-88. PubMed ID: 25995447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells.
    Haldar AK; Piro AS; Finethy R; Espenschied ST; Brown HE; Giebel AM; Frickel EM; Nelson DE; Coers J
    mBio; 2016 Dec; 7(6):. PubMed ID: 27965446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydial intracellular survival strategies.
    Bastidas RJ; Elwell CA; Engel JN; Valdivia RH
    Cold Spring Harb Perspect Med; 2013 May; 3(5):a010256. PubMed ID: 23637308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by
    Caven L; Carabeo RA
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Male genital tract immune response against
    Mackern-Oberti JP; Motrich RD; Damiani MT; Saka HA; Quintero CA; Sánchez LR; Moreno-Sosa T; Olivera C; Cuffini C; Rivero VE
    Reproduction; 2017 Oct; 154(4):R99-R110. PubMed ID: 28878094
    [No Abstract]   [Full Text] [Related]  

  • 11. Chlamydia trachomatis: the Persistent Pathogen.
    Witkin SS; Minis E; Athanasiou A; Leizer J; Linhares IM
    Clin Vaccine Immunol; 2017 Oct; 24(10):. PubMed ID: 28835360
    [No Abstract]   [Full Text] [Related]  

  • 12. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis.
    Nans A; Ford C; Hayward RD
    Microbes Infect; 2015; 17(11-12):727-31. PubMed ID: 26320027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways.
    N'Gadjaga MD; Perrinet S; Connor MG; Bertolin G; Millot GA; Subtil A
    J Biol Chem; 2022 Sep; 298(9):102338. PubMed ID: 35931114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The
    Meier K; Jachmann LH; Türköz G; Babu Sait MR; Pérez L; Kepp O; Valdivia RH; Kroemer G; Sixt BS
    mBio; 2023 Aug; 14(4):e0319022. PubMed ID: 37530528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia cell biology and pathogenesis.
    Elwell C; Mirrashidi K; Engel J
    Nat Rev Microbiol; 2016 Jun; 14(6):385-400. PubMed ID: 27108705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces
    Cossé MM; Barta ML; Fisher DJ; Oesterlin LK; Niragire B; Perrinet S; Millot GA; Hefty PS; Subtil A
    Front Cell Infect Microbiol; 2018; 8():145. PubMed ID: 29868501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia trachomatis Subverts Alpha-Actinins To Stabilize Its Inclusion.
    Haines A; Wesolowski J; Paumet F
    Microbiol Spectr; 2023 Feb; 11(1):e0261422. PubMed ID: 36651786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis.
    Rajeeve K; Vollmuth N; Janaki-Raman S; Wulff TF; Baluapuri A; Dejure FR; Huber C; Fink J; Schmalhofer M; Schmitz W; Sivadasan R; Eilers M; Wolf E; Eisenreich W; Schulze A; Seibel J; Rudel T
    Nat Microbiol; 2020 Nov; 5(11):1390-1402. PubMed ID: 32747796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis.
    Finethy R; Coers J
    FEMS Microbiol Rev; 2016 Nov; 40(6):875-893. PubMed ID: 28201690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.