BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 36788308)

  • 21. Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response.
    Rajeeve K; Das S; Prusty BK; Rudel T
    Nat Microbiol; 2018 Jul; 3(7):824-835. PubMed ID: 29946164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic energy dependency of
    Liang P; Rosas-Lemus M; Patel D; Fang X; Tuz K; Juárez O
    J Biol Chem; 2018 Jan; 293(2):510-522. PubMed ID: 29123027
    [No Abstract]   [Full Text] [Related]  

  • 23.
    Faris R; Andersen SE; McCullough A; Gourronc F; Klingelhutz AJ; Weber MM
    Front Cell Infect Microbiol; 2019; 9():399. PubMed ID: 32039039
    [No Abstract]   [Full Text] [Related]  

  • 24. Directional evolution of Chlamydia trachomatis towards niche-specific adaptation.
    Borges V; Nunes A; Ferreira R; Borrego MJ; Gomes JP
    J Bacteriol; 2012 Nov; 194(22):6143-53. PubMed ID: 22961851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling.
    Singh R; Liechti G; Slade JA; Maurelli AT
    Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32094256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Make It a Sweet Home: Responses of
    Triboulet S; Subtil A
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30848236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane vesicle production by Chlamydia trachomatis as an adaptive response.
    Frohlich KM; Hua Z; Quayle AJ; Wang J; Lewis ME; Chou CW; Luo M; Buckner LR; Shen L
    Front Cell Infect Microbiol; 2014; 4():73. PubMed ID: 24959424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Innate Lymphoid Cells Are Required for Endometrial Resistance to
    Xu H; Su X; Zhao Y; Tang L; Chen J; Zhong G
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32341118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth.
    Olive AJ; Haff MG; Emanuele MJ; Sack LM; Barker JR; Elledge SJ; Starnbach MN
    Cell Host Microbe; 2014 Jan; 15(1):113-24. PubMed ID: 24439903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell.
    Szaszák M; Steven P; Shima K; Orzekowsky-Schröder R; Hüttmann G; König IR; Solbach W; Rupp J
    PLoS Pathog; 2011 Jul; 7(7):e1002108. PubMed ID: 21779161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Persistence Alters the Interaction between Chlamydia trachomatis and Its Host Cell.
    Brockett MR; Liechti GW
    Infect Immun; 2021 Jul; 89(8):e0068520. PubMed ID: 34001559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamin-mediated lipid acquisition is essential for Chlamydia trachomatis development.
    Gurumurthy RK; Chumduri C; Karlas A; Kimmig S; Gonzalez E; Machuy N; Rudel T; Meyer TF
    Mol Microbiol; 2014 Oct; 94(1):186-201. PubMed ID: 25116793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Dynamic, Ring-Forming Bactofilin Critical for Maintaining Cell Size in the Obligate Intracellular Bacterium Chlamydia trachomatis.
    Brockett MR; Lee J; Cox JV; Liechti GW; Ouellette SP
    Infect Immun; 2021 Jul; 89(8):e0020321. PubMed ID: 33941579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlamydia trachomatis - the agent.
    Cevenini R; Donati M; Sambri V
    Best Pract Res Clin Obstet Gynaecol; 2002 Dec; 16(6):761-73. PubMed ID: 12473280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture.
    Giebel AM; Hu S; Rajaram K; Finethy R; Toh E; Brothwell JA; Morrison SG; Suchland RJ; Stein BD; Coers J; Morrison RP; Nelson DE
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conserved type III secretion system exerts important roles in Chlamydia trachomatis.
    Dai W; Li Z
    Int J Clin Exp Pathol; 2014; 7(9):5404-14. PubMed ID: 25337183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlamydia trachomatis recruits protein kinase C during infection.
    Sah P; Nelson NH; Shaw JH; Lutter EI
    Pathog Dis; 2019 Aug; 77(6):. PubMed ID: 31647538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broad recruitment of mGBP family members to Chlamydia trachomatis inclusions.
    Lindenberg V; Mölleken K; Kravets E; Stallmann S; Hegemann JH; Degrandi D; Pfeffer K
    PLoS One; 2017; 12(9):e0185273. PubMed ID: 28945814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tryptophan Operon Diversity Reveals Evolutionary Trends among Geographically Disparate Chlamydia trachomatis Ocular and Urogenital Strains Affecting Tryptophan Repressor and Synthase Function.
    Bommana S; Somboonna N; Richards G; Tarazkar M; Dean D
    mBio; 2021 May; 12(3):. PubMed ID: 33975934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New frontiers in type III secretion biology: the Chlamydia perspective.
    Mueller KE; Plano GV; Fields KA
    Infect Immun; 2014 Jan; 82(1):2-9. PubMed ID: 24126521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.