BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36788327)

  • 1. Cell quantification in digital contrast microscopy images with convolutional neural networks algorithm.
    Ferreira EKGD; Lara DSD; Silveira GF
    Sci Rep; 2023 Feb; 13(1):2596. PubMed ID: 36788327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks.
    Ferreira EKGD; Silveira GF
    Sci Rep; 2024 Apr; 14(1):9031. PubMed ID: 38641688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convolutional neural network for segmentation of yeast cells without manual training annotations.
    Kruitbosch HT; Mzayek Y; Omlor S; Guerra P; Milias-Argeitis A
    Bioinformatics; 2022 Feb; 38(5):1427-1433. PubMed ID: 34893817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images.
    Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ
    Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection.
    Xue Y; Bigras G; Hugh J; Ray N
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2632-2641. PubMed ID: 30908206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing high fidelity digital rock images using deep convolutional neural networks.
    Bizhani M; Ardakani OH; Little E
    Sci Rep; 2022 Mar; 12(1):4264. PubMed ID: 35277546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-Net: A unified model for segmentation of various objects in microscopy images.
    Raza SEA; Cheung L; Shaban M; Graham S; Epstein D; Pelengaris S; Khan M; Rajpoot NM
    Med Image Anal; 2019 Feb; 52():160-173. PubMed ID: 30580111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepHCS
    Lee G; Oh JW; Her NG; Jeong WK
    Med Image Anal; 2021 May; 70():101995. PubMed ID: 33640720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.
    Chen R; Wang M; Lai Y
    PLoS One; 2020; 15(7):e0235783. PubMed ID: 32634167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Fundus Image Quality Assessment in Retinopathy of Prematurity Using Deep Convolutional Neural Networks.
    Coyner AS; Swan R; Campbell JP; Ostmo S; Brown JM; Kalpathy-Cramer J; Kim SJ; Jonas KE; Chan RVP; Chiang MF;
    Ophthalmol Retina; 2019 May; 3(5):444-450. PubMed ID: 31044738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A convolutional neural network Cascade for plantar pressure images registration.
    Xia Y; Li Y; Xun L; Yan Q; Zhang D
    Gait Posture; 2019 Feb; 68():403-408. PubMed ID: 30594014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing Precision Limits of Neural Network-Based Quality Control Metrics in High-Throughput Digital Microscopy.
    Calderon CP; Ripple DC; Srinivasan C; Ma Y; Carrier MJ; Randolph TW; O'Connor TF
    Pharm Res; 2022 Feb; 39(2):263-279. PubMed ID: 35080706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical learning of deep features from drug-exposed cell images to calculate IC50 without staining.
    Cho K; Choi ES; Kim JH; Son JW; Kim E
    Sci Rep; 2022 Apr; 12(1):6610. PubMed ID: 35459284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.