These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36788343)

  • 21. Combined laser interference and photolithography patterning of a hybrid mask mold for nanoimprint lithography.
    Ahn S; Choi J; Kim E; Dong KY; Jeon H; Ju BK; Lee KB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6039-43. PubMed ID: 22121654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An integrated and multi-purpose microscope for the characterization of atomically thin optoelectronic devices.
    De Sanctis A; Jones GF; Townsend NJ; Craciun MF; Russo S
    Rev Sci Instrum; 2017 May; 88(5):055102. PubMed ID: 28571447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micromask Lithography for Cheap and Fast 2D Materials Microstructures Fabrication.
    Pugachev MV; Duleba AI; Galiullin AA; Kuntsevich AY
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoresist Contact Patterning of Quantum Dot Films.
    Keum H; Jiang Y; Park JK; Flanagan JC; Shim M; Kim S
    ACS Nano; 2018 Oct; 12(10):10024-10031. PubMed ID: 30247027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Electrical Properties of Lithography-Free Fabricated MoS
    Yang H; Cai S; Zhang Y; Wu D; Fang X
    J Phys Chem Lett; 2021 Mar; 12(11):2705-2711. PubMed ID: 33703909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two dimensional atomically thin MoS2 nanosheets and their sensing applications.
    Huang Y; Guo J; Kang Y; Ai Y; Li CM
    Nanoscale; 2015 Dec; 7(46):19358-76. PubMed ID: 26554465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesive lithography for fabricating organic electronic and optoelectronics devices.
    Wang Z; Xing R; Yu X; Han Y
    Nanoscale; 2011 Jul; 3(7):2663-78. PubMed ID: 21698322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maskless Device Fabrication and Laser-Induced Doping in MoS
    Kafri A; Dutta D; Mukherjee S; Mohapatra PK; Ismach A; Koren E
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5399-5405. PubMed ID: 33464810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining UV lithography and an imprinting technique for patterning metal-organic frameworks.
    Doherty CM; Grenci G; Riccò R; Mardel JI; Reboul J; Furukawa S; Kitagawa S; Hill AJ; Falcaro P
    Adv Mater; 2013 Sep; 25(34):4701-5. PubMed ID: 23893365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Setup for photolithography on microscopic flakes of 2D materials by combining simple-geometry mask projection with writing.
    Jindal V; Sugunakar V; Ghosh S
    Rev Sci Instrum; 2022 Feb; 93(2):023901. PubMed ID: 35232160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lithography-free and high-efficiency preparation of black phosphorous devices by direct evaporation through shadow mask.
    Ni J; Mi H; Tan P; An X; Gao L; Luo X; Cai Z; Ni Z; Gu X; Xiao S; Nan H; Ostrikov KK
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35172297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Step Dual-Layer Photolithography for Tunable and Scalable Nanopatterning.
    Liu W; Wang J; Xu X; Zhao C; Xu X; Weiss PS
    ACS Nano; 2021 Jul; 15(7):12180-12188. PubMed ID: 34170108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maskless lithography for large area patterning of three-dimensional microstructures with application on a light guiding plate.
    Syu YS; Huang YB; Jiang MZ; Wu CY; Lee YC
    Opt Express; 2023 Apr; 31(8):12232-12248. PubMed ID: 37157387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Achieving Low Contact Resistance by Engineering a Metal-Graphene Interface Simply with Optical Lithography.
    Kong Q; Wang X; Xia L; Wu C; Feng Z; Wang M; Zhao J
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21573-21578. PubMed ID: 28574244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clean BN-Encapsulated 2D FETs with Lithography-Compatible Contacts.
    Liang B; Wang A; Zhou J; Ju S; Chen J; Watanabe K; Taniguchi T; Shi Y; Li S
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18697-18703. PubMed ID: 35436083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Performance Field-Effect Transistors Based on Partially Suspended 2D Materials via Block Copolymer Lithography.
    Kim S; Lee SE; Park JH; Shin JY; Lee B; Lim HY; Oh YT; Hwang JP; Seon SW; Kim SH; Yu TS; Kim BH
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice-assisted electron-beam lithography for MoS
    Yao G; Zhao D; Hong Y; Zheng R; Qiu M
    Nanoscale Adv; 2022 May; 4(11):2479-2483. PubMed ID: 36134129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-Sided Opportunities Using Chemical Lift-Off Lithography.
    Andrews AM; Liao WS; Weiss PS
    Acc Chem Res; 2016 Aug; 49(8):1449-57. PubMed ID: 27064348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Sub-Micrometer-Sized MoS
    Liu L; Shi J; Li M; Yu P; Yang T; Li G
    Small; 2018 Dec; 14(49):e1803273. PubMed ID: 30239118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Study of the Impact of Aberration-Corrected Electron-Beam Lithography on the Electronic Transport of Suspended Graphene Devices.
    Mizuno N; Camino F; Du X
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32252373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.