These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 36788531)
1. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction. Hauptmann T; Kramer S BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531 [TBL] [Abstract][Full Text] [Related]
2. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
3. MOLI: multi-omics late integration with deep neural networks for drug response prediction. Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700 [TBL] [Abstract][Full Text] [Related]
4. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks. Choi JM; Chae H BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124 [TBL] [Abstract][Full Text] [Related]
5. Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment. Cho HJ; Shu M; Bekiranov S; Zang C; Zhang A Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36864611 [TBL] [Abstract][Full Text] [Related]
6. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction. Wen G; Li L Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887 [TBL] [Abstract][Full Text] [Related]
7. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification. Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884 [TBL] [Abstract][Full Text] [Related]
8. MOMA: a multi-task attention learning algorithm for multi-omics data interpretation and classification. Moon S; Lee H Bioinformatics; 2022 Apr; 38(8):2287-2296. PubMed ID: 35157023 [TBL] [Abstract][Full Text] [Related]
9. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping. Cai Y; Wang S Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322 [TBL] [Abstract][Full Text] [Related]
10. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
12. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
13. moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud. Choi JM; Park C; Chae H PeerJ; 2024; 12():e17006. PubMed ID: 38426141 [TBL] [Abstract][Full Text] [Related]
15. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction. Lee M; Kim PJ; Joe H; Kim HG Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883 [TBL] [Abstract][Full Text] [Related]
16. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model. Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619 [TBL] [Abstract][Full Text] [Related]
17. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss. Liu C; Wang L; Liu Z BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199 [TBL] [Abstract][Full Text] [Related]
18. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). Ma T; Zhang A BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727 [TBL] [Abstract][Full Text] [Related]
19. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer. Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589 [TBL] [Abstract][Full Text] [Related]
20. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype. Jeong D; Koo B; Oh M; Kim TB; Kim S Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]