These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 36788587)
1. Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways. Moreira JPC; Heap JT; Alves JI; Domingues L Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):24. PubMed ID: 36788587 [TBL] [Abstract][Full Text] [Related]
2. Propionate Production from Carbon Monoxide by Synthetic Cocultures of Acetobacterium wieringae and Propionigenic Bacteria. Moreira JPC; Diender M; Arantes AL; Boeren S; Stams AJM; Alves MM; Alves JI; Sousa DZ Appl Environ Microbiol; 2021 Jun; 87(14):e0283920. PubMed ID: 33990298 [TBL] [Abstract][Full Text] [Related]
3. Enrichment of Anaerobic Syngas-Converting Communities and Isolation of a Novel Carboxydotrophic Arantes AL; Moreira JPC; Diender M; Parshina SN; Stams AJM; Alves MM; Alves JI; Sousa DZ Front Microbiol; 2020; 11():58. PubMed ID: 32082285 [TBL] [Abstract][Full Text] [Related]
4. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. Groher A; Weuster-Botz D J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467 [TBL] [Abstract][Full Text] [Related]
5. Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum. Pyne ME; Moo-Young M; Chung DA; Chou CP Biotechnol Biofuels; 2013 Apr; 6(1):50. PubMed ID: 23570573 [TBL] [Abstract][Full Text] [Related]
6. Acetone production with metabolically engineered strains of Acetobacterium woodii. Hoffmeister S; Gerdom M; Bengelsdorf FR; Linder S; Flüchter S; Öztürk H; Blümke W; May A; Fischer RJ; Bahl H; Dürre P Metab Eng; 2016 Jul; 36():37-47. PubMed ID: 26971669 [TBL] [Abstract][Full Text] [Related]
7. Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen. Arslan K; Schoch T; Höfele F; Herrschaft S; Oberlies C; Bengelsdorf F; Veiga MC; Dürre P; Kennes C Biotechnol J; 2022 May; 17(5):e2100515. PubMed ID: 35077002 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii. Chowdhury NP; Litty D; Müller V Int Microbiol; 2022 Aug; 25(3):551-560. PubMed ID: 35179672 [TBL] [Abstract][Full Text] [Related]
9. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Neuendorf CS; Vignolle GA; Derntl C; Tomin T; Novak K; Mach RL; Birner-Grünberger R; Pflügl S Metab Eng; 2021 Nov; 68():68-85. PubMed ID: 34537366 [TBL] [Abstract][Full Text] [Related]
10. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. Straub M; Demler M; Weuster-Botz D; Dürre P J Biotechnol; 2014 May; 178():67-72. PubMed ID: 24637370 [TBL] [Abstract][Full Text] [Related]
11. Defining Genomic and Predicted Metabolic Features of the Ross DE; Marshall CW; Gulliver D; May HD; Norman RS mSystems; 2020 Sep; 5(5):. PubMed ID: 32934112 [TBL] [Abstract][Full Text] [Related]
12. General medium for the autotrophic cultivation of acetogens. Groher A; Weuster-Botz D Bioprocess Biosyst Eng; 2016 Oct; 39(10):1645-50. PubMed ID: 27270418 [TBL] [Abstract][Full Text] [Related]
13. A clean in-frame knockout system for gene deletion in Acetobacterium woodii. Baker JP; Sáez-Sáez J; Jensen SI; Nielsen AT; Minton NP J Biotechnol; 2022 Jul; 353():9-18. PubMed ID: 35659892 [TBL] [Abstract][Full Text] [Related]
14. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii. Steger F; Rachbauer L; Windhagauer M; Montgomery LFR; Bochmann G Anaerobe; 2017 Aug; 46():96-103. PubMed ID: 28648471 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. Kato J; Takemura K; Kato S; Fujii T; Wada K; Iwasaki Y; Aoi Y; Matsushika A; Murakami K; Nakashimada Y AMB Express; 2021 Apr; 11(1):59. PubMed ID: 33891189 [TBL] [Abstract][Full Text] [Related]
16. The effects of CO Esquivel-Elizondo S; Delgado AG; Rittmann BE; Krajmalnik-Brown R Biotechnol Biofuels; 2017; 10():220. PubMed ID: 28936234 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic Biohydrogenation of Isoprene by Acetobacterium wieringae Strain Y. Jin H; Li X; Wang H; Cápiro NL; Li X; Löffler FE; Yan J; Yang Y mBio; 2022 Dec; 13(6):e0208622. PubMed ID: 36342171 [TBL] [Abstract][Full Text] [Related]
18. Lactate-mediated mixotrophic co-cultivation of Clostridium drakei and recombinant Acetobacterium woodii for autotrophic production of volatile fatty acids. Mook A; Herzog J; Walther P; Dürre P; Bengelsdorf FR Microb Cell Fact; 2024 Jul; 23(1):213. PubMed ID: 39061103 [TBL] [Abstract][Full Text] [Related]
19. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP mBio; 2016 May; 7(3):. PubMed ID: 27222467 [TBL] [Abstract][Full Text] [Related]
20. Heterologous Production of Isopropanol Using Metabolically Engineered Höfele F; Schoch T; Oberlies C; Dürre P Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]