These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36788805)
1. Spatial distributions of airborne transmission risk on commuter buses: Numerical case study using computational fluid and particle dynamics with computer-simulated persons. Yoo SJ; Kurokawa A; Matsunaga K; Ito K Exp Comput Multiph Flow; 2023; 5(3):304-318. PubMed ID: 36788805 [TBL] [Abstract][Full Text] [Related]
2. An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments. Zhu S; Srebric J; Spengler JD; Demokritou P Build Environ; 2012 Jan; 47():67-75. PubMed ID: 32288019 [TBL] [Abstract][Full Text] [Related]
3. Effects of purifiers on the airborne transmission of droplets inside a bus. Yang Y; Wang Y; Tian L; Su C; Chen Z; Huang Y Phys Fluids (1994); 2022 Jan; 34(1):017108. PubMed ID: 35340683 [TBL] [Abstract][Full Text] [Related]
4. A numerical study of COVID-19-laden droplets dispersion in aircraft cabin ventilation system. Liu Z; Wu J; Yang G; Zhang X; Dai Z Heliyon; 2023 Mar; 9(3):e13920. PubMed ID: 36851973 [TBL] [Abstract][Full Text] [Related]
5. Experimental and numerical investigation of micro-environmental conditions in public transportation buses. Zhu S; Demokritou P; Spengler J Build Environ; 2010 Oct; 45(10):2077-2088. PubMed ID: 32288006 [TBL] [Abstract][Full Text] [Related]
6. Tradeoffs between ventilation, air mixing, and passenger density for the airborne transmission risk in airport transportation vehicles. Zhu S; Lin T; Laurent JGC; Spengler JD; Srebric J Build Environ; 2022 Jul; 219():109186. PubMed ID: 35599668 [TBL] [Abstract][Full Text] [Related]
7. Factors affecting the exposure of passengers, service staff and train drivers inside trains to airborne particles. Cha Y; Tu M; Elmgren M; Silvergren S; Olofsson U Environ Res; 2018 Oct; 166():16-24. PubMed ID: 29859369 [TBL] [Abstract][Full Text] [Related]
8. Risk assessment of airborne infectious diseases in aircraft cabins. Gupta JK; Lin CH; Chen Q Indoor Air; 2012 Oct; 22(5):388-95. PubMed ID: 22313168 [TBL] [Abstract][Full Text] [Related]
9. Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters. Islam MT; Chen Y; Seong D; Verhougstraete M; Son YJ Heliyon; 2024 Aug; 10(15):e35092. PubMed ID: 39170199 [TBL] [Abstract][Full Text] [Related]
10. Optimizing cabin air inlet velocities and personal risk assessment: Introducing the Personal Contamination Ratio (PCR) method for enhanced aircraft cabin infection risk evaluation. Tu R; Shang Y; Li X; He F; Tu J PLoS One; 2024; 19(9):e0309730. PubMed ID: 39240842 [TBL] [Abstract][Full Text] [Related]
11. Transmission of droplet aerosols in an elevator cabin: Effect of the ventilation mode. Li X; Feng B Build Environ; 2023 May; 236():110261. PubMed ID: 37041765 [TBL] [Abstract][Full Text] [Related]
12. Exposure levels of particulate matter in long-distance buses in Taiwan. Huang HL; Hsu DJ Indoor Air; 2009 Jun; 19(3):234-42. PubMed ID: 19220506 [TBL] [Abstract][Full Text] [Related]
13. Role of pathogen-laden expiratory droplet dispersion and natural ventilation explaining a COVID-19 outbreak in a coach bus. Luo Q; Ou C; Hang J; Luo Z; Yang H; Yang X; Zhang X; Li Y; Fan X Build Environ; 2022 Jul; 220():109160. PubMed ID: 35615259 [TBL] [Abstract][Full Text] [Related]
14. Insufficient ventilation led to a probable long-range airborne transmission of SARS-CoV-2 on two buses. Ou C; Hu S; Luo K; Yang H; Hang J; Cheng P; Hai Z; Xiao S; Qian H; Xiao S; Jing X; Xie Z; Ling H; Liu L; Gao L; Deng Q; Cowling BJ; Li Y Build Environ; 2022 Jan; 207():108414. PubMed ID: 34629689 [TBL] [Abstract][Full Text] [Related]
15. Numerical investigation of airborne contaminant transport under different vortex structures in the aircraft cabin. Li F; Liu J; Ren J; Cao X; Zhu Y Int J Heat Mass Transf; 2016 May; 96():287-295. PubMed ID: 32226103 [TBL] [Abstract][Full Text] [Related]
16. Disease transmission through expiratory aerosols on an urban bus. Zhang Z; Han T; Yoo KH; Capecelatro J; Boehman AL; Maki K Phys Fluids (1994); 2021 Jan; 33(1):015116. PubMed ID: 33746484 [TBL] [Abstract][Full Text] [Related]
17. Assessing Effectiveness of Ceiling-Ventilated Mock Airborne Infection Isolation Room in Preventing Hospital-Acquired Influenza Transmission to Health Care Workers. Thatiparti DS; Ghia U; Mead KR ASHRAE Trans; 2016; 122(2):35-46. PubMed ID: 28529344 [TBL] [Abstract][Full Text] [Related]
18. Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis. Han Z; To GN; Fu SC; Chao CY; Weng W; Huang Q BMC Infect Dis; 2014 Aug; 14():434. PubMed ID: 25098254 [TBL] [Abstract][Full Text] [Related]
19. Assessment of SARS-CoV-2 airborne infection transmission risk in public buses. Bertone M; Mikszewski A; Stabile L; Riccio G; Cortellessa G; d'Ambrosio FR; Papa V; Morawska L; Buonanno G Geosci Front; 2022 Nov; 13(6):101398. PubMed ID: 37521135 [TBL] [Abstract][Full Text] [Related]
20. Transmission of pathogen-laden expiratory droplets in a coach bus. Yang X; Ou C; Yang H; Liu L; Song T; Kang M; Lin H; Hang J J Hazard Mater; 2020 Oct; 397():122609. PubMed ID: 32361671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]