These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 36789135)
1. Does image resolution impact chest X-ray based fine-grained Tuberculosis-consistent lesion segmentation? Rajaraman S; Yang F; Zamzmi G; Xue Z; Antani S ArXiv; 2023 Jan; ():. PubMed ID: 36789135 [TBL] [Abstract][Full Text] [Related]
2. Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays. Rajaraman S; Yang F; Zamzmi G; Xue Z; Antani S Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832235 [TBL] [Abstract][Full Text] [Related]
3. Improved Semantic Segmentation of Tuberculosis-Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations. Rajaraman S; Folio LR; Dimperio J; Alderson PO; Antani SK Diagnostics (Basel); 2021 Mar; 11(4):. PubMed ID: 33808240 [TBL] [Abstract][Full Text] [Related]
4. A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs. Rajaraman S; Yang F; Zamzmi G; Xue Z; Antani SK Bioengineering (Basel); 2022 Aug; 9(9):. PubMed ID: 36134959 [TBL] [Abstract][Full Text] [Related]
5. Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays. Rajaraman S; Zamzmi G; Yang F; Xue Z; Jaeger S; Antani SK Biomedicines; 2022 Jun; 10(6):. PubMed ID: 35740345 [TBL] [Abstract][Full Text] [Related]
6. Annotations of Lung Abnormalities in Shenzhen Chest X-ray Dataset for Computer-Aided Screening of Pulmonary Diseases. Yang F; Lu PX; Deng M; Wáng YXJ; Rajaraman S; Xue Z; Folio LR; Antani SK; Jaeger S Data (Basel); 2022 Jul; 7(7):. PubMed ID: 36381384 [TBL] [Abstract][Full Text] [Related]
7. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers. Rajaraman S; Zamzmi G; Folio LR; Antani S Front Genet; 2022; 13():864724. PubMed ID: 35281798 [TBL] [Abstract][Full Text] [Related]
8. Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings. Rajaraman S; Zamzmi G; Folio L; Alderson P; Antani S Diagnostics (Basel); 2021 May; 11(5):. PubMed ID: 34067034 [TBL] [Abstract][Full Text] [Related]
9. Effect of image resolution on automated classification of chest X-rays. Haque MIU; Dubey AK; Danciu I; Justice AC; Ovchinnikova OS; Hinkle JD J Med Imaging (Bellingham); 2023 Jul; 10(4):044503. PubMed ID: 37547812 [TBL] [Abstract][Full Text] [Related]
10. Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble. Khatibi T; Shahsavari A; Farahani A Phys Eng Sci Med; 2021 Mar; 44(1):291-311. PubMed ID: 33616887 [TBL] [Abstract][Full Text] [Related]
11. Optimized chest X-ray image semantic segmentation networks for COVID-19 early detection. Gopatoti A; Vijayalakshmi P J Xray Sci Technol; 2022; 30(3):491-512. PubMed ID: 35213339 [TBL] [Abstract][Full Text] [Related]
12. Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models. Guo R; Passi K; Jain CK Front Artif Intell; 2020; 3():583427. PubMed ID: 33733221 [TBL] [Abstract][Full Text] [Related]
13. Ensemble Technique Coupled with Deep Transfer Learning Framework for Automatic Detection of Tuberculosis from Chest X-ray Radiographs. Kotei E; Thirunavukarasu R Healthcare (Basel); 2022 Nov; 10(11):. PubMed ID: 36421659 [TBL] [Abstract][Full Text] [Related]
14. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Rahman T; Khandakar A; Qiblawey Y; Tahir A; Kiranyaz S; Abul Kashem SB; Islam MT; Al Maadeed S; Zughaier SM; Khan MS; Chowdhury MEH Comput Biol Med; 2021 May; 132():104319. PubMed ID: 33799220 [TBL] [Abstract][Full Text] [Related]
15. Segmenting lung lesions of COVID-19 from CT images via pyramid pooling improved Unet. Ma Y; Feng P; He P; Ren Y; Guo X; Yu X; Wei B Biomed Phys Eng Express; 2021 May; 7(4):. PubMed ID: 33979791 [TBL] [Abstract][Full Text] [Related]
16. Multi-View Ensemble Convolutional Neural Network to Improve Classification of Pneumonia in Low Contrast Chest X-Ray Images. Ferreira JR; Armando Cardona Cardenas D; Moreno RA; de Fatima de Sa Rebelo M; Krieger JE; Antonio Gutierrez M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1238-1241. PubMed ID: 33018211 [TBL] [Abstract][Full Text] [Related]
17. Contour-aware multi-label chest X-ray organ segmentation. Kholiavchenko M; Sirazitdinov I; Kubrak K; Badrutdinova R; Kuleev R; Yuan Y; Vrtovec T; Ibragimov B Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):425-436. PubMed ID: 32034633 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based automatic detection of tuberculosis disease in chest X-ray images. Showkatian E; Salehi M; Ghaffari H; Reiazi R; Sadighi N Pol J Radiol; 2022; 87():e118-e124. PubMed ID: 35280947 [TBL] [Abstract][Full Text] [Related]
19. Refining dataset curation methods for deep learning-based automated tuberculosis screening. Kim TK; Yi PH; Hager GD; Lin CT J Thorac Dis; 2020 Sep; 12(9):5078-5085. PubMed ID: 33145084 [TBL] [Abstract][Full Text] [Related]
20. A radiographic, deep transfer learning framework, adapted to estimate lung opacities from chest x-rays. Vardhan A; Makhnevich A; Omprakash P; Hirschorn D; Barish M; Cohen SL; Zanos TP Bioelectron Med; 2023 Jan; 9(1):1. PubMed ID: 36597113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]