These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36789261)

  • 1. Consistencies and contradictions in different polymer models of chromatin architecture.
    Câmara AS; Mascher M
    Comput Struct Biotechnol J; 2023; 21():1084-1091. PubMed ID: 36789261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations.
    Rosa A
    Methods Mol Biol; 2022; 2301():235-258. PubMed ID: 34415539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear architecture, chromosome domains and genetic damage.
    Folle GA
    Mutat Res; 2008; 658(3):172-83. PubMed ID: 17921046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ultrastructural organization of prematurely condensed chromosomes.
    Gollin SM; Wray W; Hanks SK; Hittelman WN; Rao PN
    J Cell Sci Suppl; 1984; 1():203-21. PubMed ID: 6397471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer physics of chromosome large-scale 3D organisation.
    Chiariello AM; Annunziatella C; Bianco S; Esposito A; Nicodemi M
    Sci Rep; 2016 Jul; 6():29775. PubMed ID: 27405443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating Dynamic Chromosome Compaction: Methods for Bridging In Silico to In Vivo.
    He Y; Adalsteinsson D; Walker B; Lawrimore J; Forest MG; Bloom K
    Methods Mol Biol; 2022; 2415():211-220. PubMed ID: 34972957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear organization in crucifer genomes: nucleolus-associated telomere clustering is not a universal interphase configuration in Brassicaceae.
    Shan W; Kubová M; Mandáková T; Lysak MA
    Plant J; 2021 Oct; 108(2):528-540. PubMed ID: 34390055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting chromatin architecture from models of polymer physics.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Chromosome Res; 2017 Mar; 25(1):25-34. PubMed ID: 28070687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer models are a versatile tool to study chromatin 3D organization.
    Esposito A; Bianco S; Fiorillo L; Conte M; Abraham A; Musella F; Nicodemi M; Prisco A; Chiariello AM
    Biochem Soc Trans; 2021 Aug; 49(4):1675-1684. PubMed ID: 34282837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale chromatin organisation in interphase, mitosis and meiosis.
    MacGregor IA; Adams IR; Gilbert N
    Biochem J; 2019 Aug; 476(15):2141-2156. PubMed ID: 31383821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches from polymer physics to investigate chromatin folding.
    Bianco S; Chiariello AM; Conte M; Esposito A; Fiorillo L; Musella F; Nicodemi M
    Curr Opin Cell Biol; 2020 Jun; 64():10-17. PubMed ID: 32045823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting genome organisation and function with mechanistic modelling.
    Chiang M; Brackley CA; Marenduzzo D; Gilbert N
    Trends Genet; 2022 Apr; 38(4):364-378. PubMed ID: 34857425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order chromatin structure: bridging physics and biology.
    Fudenberg G; Mirny LA
    Curr Opin Genet Dev; 2012 Apr; 22(2):115-24. PubMed ID: 22360992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.