These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36789261)

  • 21. Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei.
    de Nooijer S; Wellink J; Mulder B; Bisseling T
    Nucleic Acids Res; 2009 Jun; 37(11):3558-68. PubMed ID: 19359359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression-dependent folding of interphase chromatin.
    Jerabek H; Heermann DW
    PLoS One; 2012; 7(5):e37525. PubMed ID: 22649534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization.
    Parmar JJ; Woringer M; Zimmer C
    Annu Rev Biophys; 2019 May; 48():231-253. PubMed ID: 30835504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer physics reveals a combinatorial code linking 3D chromatin architecture to 1D chromatin states.
    Esposito A; Bianco S; Chiariello AM; Abraham A; Fiorillo L; Conte M; Campanile R; Nicodemi M
    Cell Rep; 2022 Mar; 38(13):110601. PubMed ID: 35354035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic 3D compartments emerge from unfolding mitotic chromosomes.
    Kumar R; Lizana L; Stenberg P
    Chromosoma; 2019 Mar; 128(1):15-20. PubMed ID: 30357462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Chromatin Architecture of Large Plant Genomes Determined by Local A/B Compartments.
    Dong P; Tu X; Chu PY; Lü P; Zhu N; Grierson D; Du B; Li P; Zhong S
    Mol Plant; 2017 Dec; 10(12):1497-1509. PubMed ID: 29175436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical mechanisms of chromatin spatial organization.
    Chiariello AM; Bianco S; Esposito A; Fiorillo L; Conte M; Irani E; Musella F; Abraham A; Prisco A; Nicodemi M
    FEBS J; 2022 Mar; 289(5):1180-1190. PubMed ID: 33583147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures.
    Hao X; Parmar JJ; Lelandais B; Aristov A; Ouyang W; Weber C; Zimmer C
    Genome Biol; 2021 May; 22(1):150. PubMed ID: 33975635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer models of interphase chromosomes.
    Vasquez PA; Bloom K
    Nucleus; 2014; 5(5):376-90. PubMed ID: 25482191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A polymer model explains the complexity of large-scale chromatin folding.
    Barbieri M; Fraser J; Lavitas LM; Chotalia M; Dostie J; Pombo A; Nicodemi M
    Nucleus; 2013; 4(4):267-73. PubMed ID: 23823730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biophysical study of the globular organisation of interphase chromosomes.
    Eidelman Y; Andreev SG
    Radiat Prot Dosimetry; 2002; 99(1-4):217-8. PubMed ID: 12194288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley.
    Jasencakova Z; Meister A; Schubert I
    Chromosoma; 2001 May; 110(2):83-92. PubMed ID: 11453558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes.
    Ostashevsky J
    Mol Biol Cell; 1998 Nov; 9(11):3031-40. PubMed ID: 9802894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate.
    Fransz P; De Jong JH; Lysak M; Castiglione MR; Schubert I
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14584-9. PubMed ID: 12384572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How enzymatic activity is involved in chromatin organization.
    Das R; Sakaue T; Shivashankar GV; Prost J; Hiraiwa T
    Elife; 2022 Dec; 11():. PubMed ID: 36472500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana.
    Del Prete S; Arpón J; Sakai K; Andrey P; Gaudin V
    Cytogenet Genome Res; 2014; 143(1-3):28-50. PubMed ID: 24992956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains.
    Jost D; Carrivain P; Cavalli G; Vaillant C
    Nucleic Acids Res; 2014 Sep; 42(15):9553-61. PubMed ID: 25092923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of dynamic three-dimensional genome structure through phase separation of chromatin.
    Fujishiro S; Sasai M
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2109838119. PubMed ID: 35617433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-scale nuclear architecture and transcriptional control.
    Vaquerizas JM; Akhtar A; Luscombe NM
    Subcell Biochem; 2011; 52():279-95. PubMed ID: 21557088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The eleven stages of the cell cycle, with emphasis on the changes in chromosomes and nucleoli during interphase and mitosis.
    Leblond CP; El-Alfy M
    Anat Rec; 1998 Nov; 252(3):426-43. PubMed ID: 9811221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.