These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36789510)

  • 1. A parametric blueprint for optimum cochlear outer hair cell design.
    Rabbitt RD; Bidone TC
    J R Soc Interface; 2023 Feb; 20(199):20220762. PubMed ID: 36789510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of outer hair cell electromechanics reveals power delivery at the upper-frequency limits of hearing.
    Rabbitt RD
    J R Soc Interface; 2022 Jun; 19(191):20220139. PubMed ID: 35673856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cochlear outer hair cell speed paradox.
    Rabbitt RD
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21880-21888. PubMed ID: 32848062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power efficiency of outer hair cell somatic electromotility.
    Rabbitt RD; Clifford S; Breneman KD; Farrell B; Brownell WE
    PLoS Comput Biol; 2009 Jul; 5(7):e1000444. PubMed ID: 19629162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megahertz Sampling of Prestin (SLC26a5) Voltage-Sensor Charge Movements in Outer Hair Cell Membranes Reveals Ultrasonic Activity that May Support Electromotility and Cochlear Amplification.
    Santos-Sacchi J; Bai JP; Navaratnam D
    J Neurosci; 2023 Apr; 43(14):2460-2468. PubMed ID: 36868859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset.
    Jensen-Smith H; Hallworth R
    Cell Motil Cytoskeleton; 2007 Sep; 64(9):705-17. PubMed ID: 17615570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outer hair cell electromotility is low-pass filtered relative to the molecular conformational changes that produce nonlinear capacitance.
    Santos-Sacchi J; Iwasa KH; Tan W
    J Gen Physiol; 2019 Dec; 151(12):1369-1385. PubMed ID: 31676485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outer hair cell electromechanical properties in a nonlinear piezoelectric model.
    Liu YW; Neely ST
    J Acoust Soc Am; 2009 Aug; 126(2):751-61. PubMed ID: 19640041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation.
    Cai W; Grosh K
    Biophys J; 2024 Oct; 123(19):3421-3432. PubMed ID: 39148291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ultrastructural distribution of prestin in outer hair cells: a post-embedding immunogold investigation of low-frequency and high-frequency regions of the rat cochlea.
    Mahendrasingam S; Beurg M; Fettiplace R; Hackney CM
    Eur J Neurosci; 2010 May; 31(9):1595-605. PubMed ID: 20525072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prestin and electromotility may serve multiple roles in cochlear outer hair cells.
    Zheng J; Takahashi S; Zhou Y; Cheatham MA
    Hear Res; 2022 Sep; 423():108428. PubMed ID: 34987016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prestin derived OHC surface area reduction underlies age-related rescaling of frequency place coding.
    Zhang Y; Lin G; Wang Y; Xue N; Lin X; Du T; Xiong W; Song L
    Hear Res; 2022 Sep; 423():108406. PubMed ID: 34933788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions.
    Yu N; Zhao HB
    PLoS One; 2009 Nov; 4(11):e7923. PubMed ID: 19936276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate Dependent Cochlear Outer Hair Cell Force Generation: Models and Parameter Estimation.
    Cai W; Grosh K
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification.
    Levic S; Lukashkina VA; Simões P; Lukashkin AN; Russell IJ
    J Neurosci; 2022 Oct; 42(42):7875-7884. PubMed ID: 36261265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the frequency response of prestin charge movement in membrane patches.
    Santos-Sacchi J; Tan W
    Biophys J; 2022 Jun; 121(12):2371-2379. PubMed ID: 35598044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential outcomes of high-fat diet on age-related rescaling of cochlear frequency place coding.
    Zhang Y; Lin G; Xue N; Wang Y; Du T; Liu H; Xiong W; Shang W; Wu H; Song L
    FASEB J; 2023 Oct; 37(10):e23167. PubMed ID: 37651093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chloride-channel blocker 9-anthracenecarboxylic acid reduces the nonlinear capacitance of prestin-associated charge movement.
    Harasztosi C; Gummer AW
    Eur J Neurosci; 2016 Apr; 43(8):1062-74. PubMed ID: 26869218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prestin's role in cochlear frequency tuning and transmission of mechanical responses to neural excitation.
    Mellado Lagarde MM; Drexl M; Lukashkin AN; Zuo J; Russell IJ
    Curr Biol; 2008 Feb; 18(3):200-2. PubMed ID: 18221877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.