These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 36789648)

  • 1. Hydrogels with electrically conductive nanomaterials for biomedical applications.
    Kougkolos G; Golzio M; Laudebat L; Valdez-Nava Z; Flahaut E
    J Mater Chem B; 2023 Mar; 11(10):2036-2062. PubMed ID: 36789648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocomposite Hydrogels and Their Applications in Tissue Engineering.
    Motealleh A; Kehr NS
    Adv Healthc Mater; 2017 Jan; 6(1):. PubMed ID: 27900856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsically Conductive Polymer Nanocomposites for Cellular Applications.
    Lalegül-Ülker Ö; Elçin AE; Elçin YM
    Adv Exp Med Biol; 2018; 1078():135-153. PubMed ID: 30357622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review.
    Zare EN; Makvandi P; Ashtari B; Rossi F; Motahari A; Perale G
    J Med Chem; 2020 Jan; 63(1):1-22. PubMed ID: 31502840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues.
    Navaei A; Rahmani Eliato K; Ros R; Migrino RQ; Willis BC; Nikkhah M
    Biomater Sci; 2019 Jan; 7(2):585-595. PubMed ID: 30426116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers.
    Nada AA; Eckstein Andicsová A; Mosnáček J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing.
    Deng Z; Hu T; Lei Q; He J; Ma PX; Guo B
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6796-6808. PubMed ID: 30673228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives.
    Liu K; Wei S; Song L; Liu H; Wang T
    J Agric Food Chem; 2020 Jul; 68(28):7269-7280. PubMed ID: 32574052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications.
    Mihajlovic M; Mihajlovic M; Dankers PYW; Masereeuw R; Sijbesma RP
    Macromol Biosci; 2019 Jan; 19(1):e1800173. PubMed ID: 30085403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials engineering, processing, and device application of hydrogel nanocomposites.
    Cha GD; Lee WH; Lim C; Choi MK; Kim DH
    Nanoscale; 2020 May; 12(19):10456-10473. PubMed ID: 32388540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review.
    Athukorala SS; Tran TS; Balu R; Truong VK; Chapman J; Dutta NK; Roy Choudhury N
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications.
    Sharma R; Kumar S; Bhawna ; Gupta A; Dheer N; Jain P; Singh P; Kumar V
    Tissue Eng Regen Med; 2022 Oct; 19(5):927-960. PubMed ID: 35661124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.
    Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY
    Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications.
    Memic A; Alhadrami HA; Hussain MA; Aldhahri M; Al Nowaiser F; Al-Hazmi F; Oklu R; Khademhosseini A
    Biomed Mater; 2015 Dec; 11(1):014104. PubMed ID: 26694229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroconductive hydrogels for biomedical applications.
    Lu H; Zhang N; Ma M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1568. PubMed ID: 31241253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroactive Smart Polymers for Biomedical Applications.
    Palza H; Zapata PA; Angulo-Pineda C
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications.
    Schöbel L; Boccaccini AR
    Acta Biomater; 2023 Oct; 169():45-65. PubMed ID: 37532132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.