These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36789672)
1. Analysis of micro- and nanoscale heterogeneities within environmentally relevant thin films containing biological components, oxyanions and minerals using AFM-PTIR spectroscopy. Kim D; Grassian VH Environ Sci Process Impacts; 2023 Mar; 25(3):484-495. PubMed ID: 36789672 [TBL] [Abstract][Full Text] [Related]
2. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study. Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024 [TBL] [Abstract][Full Text] [Related]
3. Vibrational spectroscopy as a probe of heterogeneities within geochemical thin films on macro, micro, and nanoscales. Kim D; Townsley S; Grassian VH RSC Adv; 2023 Sep; 13(41):28873-28884. PubMed ID: 37790106 [TBL] [Abstract][Full Text] [Related]
4. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals. Harrison AJ; Bilgili EA; Beaudoin SP; Taylor LS Anal Chem; 2013 Dec; 85(23):11449-55. PubMed ID: 24171582 [TBL] [Abstract][Full Text] [Related]
5. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale. Reiner E; Weston F; Pleshko N; Querido W Appl Spectrosc; 2023 Nov; 77(11):1311-1324. PubMed ID: 37774686 [TBL] [Abstract][Full Text] [Related]
6. Nucleotide Adsorption on Iron(III) Oxide Nanoparticle Surfaces: Insights into Nano-Geo-Bio Interactions Through Vibrational Spectroscopy. Sit I; Sagisaka S; Grassian VH Langmuir; 2020 Dec; 36(51):15501-15513. PubMed ID: 33331787 [TBL] [Abstract][Full Text] [Related]
7. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR). Fellows AP; Casford MTL; Davies PB Int J Cosmet Sci; 2022 Feb; 44(1):42-55. PubMed ID: 34820858 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Katzenmeyer AM; Aksyuk V; Centrone A Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013 [TBL] [Abstract][Full Text] [Related]
9. Combined in-situ attenuated total reflection-Fourier transform infrared spectroscopy and single molecule force studies of poly(acrylic acid) at electrolyte/oxide interfaces at acidic pH. Neßlinger V; Orive AG; Meinderink D; Grundmeier G J Colloid Interface Sci; 2022 Jun; 615():563-576. PubMed ID: 35152076 [TBL] [Abstract][Full Text] [Related]
10. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit. Centrone A Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952 [TBL] [Abstract][Full Text] [Related]
11. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy. Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133 [TBL] [Abstract][Full Text] [Related]
12. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging. Kennedy E; Al-Majmaie R; Al-Rubeai M; Zerulla D; Rice JH J Biophotonics; 2015 Jan; 8(1-2):133-41. PubMed ID: 24307406 [TBL] [Abstract][Full Text] [Related]
13. Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems. Or VW; Alves MR; Wade M; Schwab S; Corsi RL; Grassian VH Environ Sci Technol; 2022 Feb; 56(3):1594-1604. PubMed ID: 35061386 [TBL] [Abstract][Full Text] [Related]
14. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy. Wang L; Putnis CV Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501 [TBL] [Abstract][Full Text] [Related]
16. Adsorption state and morphology of anthraquinone-2-carboxylic acid deposited from solution onto the atomically-smooth native oxide surface of Al(111) films studied by infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. Higo M; Miake T; Mitsushio M; Yoshidome T; Ozono Y Anal Sci; 2008 Mar; 24(3):313-20. PubMed ID: 18332536 [TBL] [Abstract][Full Text] [Related]
17. Combined in situ atomic force microscopy-infrared-attenuated total reflection spectroscopy. Brucherseifer M; Kranz C; Mizaikoff B Anal Chem; 2007 Nov; 79(22):8803-6. PubMed ID: 17939644 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces. Jun YS; Kim D; Neil CW Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685 [TBL] [Abstract][Full Text] [Related]
19. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Wang H; Xie Q; Xu XG Adv Drug Deliv Rev; 2022 Jan; 180():114080. PubMed ID: 34906646 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging. Quaroni L Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]