BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36789702)

  • 1. Prediction of lake chlorophyll concentration using the BP neural network and Sentinel-2 images based on time features.
    Hu H; Fu X; Li H; Wang F; Duan W; Zhang L; Liu M
    Water Sci Technol; 2023 Feb; 87(3):539-554. PubMed ID: 36789702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method based on improved ant colony algorithm feature selection combined with GWO-SVR model for predicting chlorophyll-a concentration in Wuliangsu Lake.
    Wu C; Fu X; Li H; Hu H; Li X; Zhang L
    Water Sci Technol; 2024 Jan; 89(1):20-37. PubMed ID: 38214984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing.
    Yang Y; Zhang X; Gao W; Zhang Y; Hou X
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.
    Boucher J; Weathers KC; Norouzi H; Steele B
    Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine.
    Zhao D; Huang J; Li Z; Yu G; Shen H
    Sci Total Environ; 2024 Feb; 912():169152. PubMed ID: 38061660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm.
    Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G
    Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data].
    Bao Y; Tian QJ; Chen M; Lü CG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of chlorophyll-a Concentration of lakes based on SVM algorithm and Landsat 8 OLI images.
    Zhang T; Huang M; Wang Z
    Environ Sci Pollut Res Int; 2020 May; 27(13):14977-14990. PubMed ID: 32128729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term spatial-temporal monitoring of eutrophication in Lake Burdur using remote sensing data.
    Tuygun GT; Salgut S; Elçi A
    Water Sci Technol; 2023 May; 87(9):2184-2194. PubMed ID: 37186623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring trophic status using in situ data and Sentinel-2 MSI algorithm: lesson from Lake Malombe, Malawi.
    Makwinja R; Inagaki Y; Sagawa T; Obubu JP; Habineza E; Haaziyu W
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):29755-29772. PubMed ID: 36418816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Remote Sensing of Chlorophyll-a Concentrations in Lake Hongze Using Long Time Series MERIS Observations].
    Liu G; Li YM; Lü H; Mu M; Lei SH; Wen S; Bi S; Ding XL
    Huan Jing Ke Xue; 2017 Sep; 38(9):3645-3656. PubMed ID: 29965243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.
    Du C; Li Y; Wang Q; Liu G; Zheng Z; Mu M; Li Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28079-28101. PubMed ID: 28994019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the concentration of chlorophyll-a for Liuhai urban lakes in Beijing City.
    Zeng Y; Yang ZF; Liu JL
    J Environ Sci (China); 2006; 18(4):827-31. PubMed ID: 17078569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the drivers of chlorophyll-a dynamics in a landscape lake recharged by reclaimed water using interpretable machine learning.
    Wang C; Liu J; Qiu C; Su X; Ma N; Li J; Wang S; Qu S
    Sci Total Environ; 2024 Jan; 906():167483. PubMed ID: 37832666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical and semi-empirical chlorophyll-a modeling for water quality assessment through river-lake transition in extreme Southern Brazil.
    Caballero CB; Guedes HAS; Andrade ACF; Martins VS; Fraga RS; Mendes KGP
    An Acad Bras Cienc; 2022; 94(4):e20201891. PubMed ID: 36228213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales.
    Fergus CE; Finley AO; Soranno PA; Wagner T
    PLoS One; 2016; 11(10):e0164592. PubMed ID: 27736962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of chlorophyll a and risk assessment of water blooms in Poyang Lake based on a machine learning method.
    Huang H; Zhang J
    Environ Pollut; 2024 Apr; 347():123501. PubMed ID: 38346640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study on Algae Bloom Pigment in the Eutrophic Lake Using Bio-Optical Modelling: Hyperspectral Remote Sensing Approach.
    Vishnu Prasanth BR; Sivakumar R; Ramaraj M
    Bull Environ Contam Toxicol; 2022 Dec; 109(6):962-968. PubMed ID: 35366066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How reliable is chlorophyll-a as algae proxy in lake environments? New insights from the perspective of n-alkanes.
    He Y; Wang X; Xu F
    Sci Total Environ; 2022 Aug; 836():155700. PubMed ID: 35523340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of chlorophyll-a concentration in Turbid Lake using spectral smoothing and derivative analysis.
    Cheng C; Wei Y; Sun X; Zhou Y
    Int J Environ Res Public Health; 2013 Jul; 10(7):2979-94. PubMed ID: 23880727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.