These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36789839)

  • 1. KCNQ4 potassium channel subunit deletion leads to exaggerated acoustic startle reflex in mice.
    Maamrah B; Pocsai K; Bayasgalan T; Csemer A; Pál B
    Neuroreport; 2023 Mar; 34(4):232-237. PubMed ID: 36789839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit?
    Lingenhöhl K; Friauf E
    J Neurosci; 1994 Mar; 14(3 Pt 1):1176-94. PubMed ID: 8120618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the glutamate receptor epsilon2 and delta2 subunits in the potentiation and prepulse inhibition of the acoustic startle reflex.
    Takeuchi T; Kiyama Y; Nakamura K; Tsujita M; Matsuda I; Mori H; Munemoto Y; Kuriyama H; Natsume R; Sakimura K; Mishina M
    Eur J Neurosci; 2001 Jul; 14(1):153-60. PubMed ID: 11488959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Habituation and sensitization of startle reflexes elicited electrically from the brainstem.
    Davis M; Parisi T; Gendelman DS; Tischler M; Kehne JH
    Science; 1982 Nov; 218(4573):688-90. PubMed ID: 7134967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Brainstem reticulotegmental neural ensemble drives acoustic startle reflexes.
    Guo W; Fan S; Xiao D; Dong H; Xu G; Wan Z; Ma Y; Wang Z; Xue T; Zhou Y; Li Y; Xiong W
    Nat Commun; 2021 Nov; 12(1):6403. PubMed ID: 34737329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A primary acoustic startle circuit: lesion and stimulation studies.
    Davis M; Gendelman DS; Tischler MD; Gendelman PM
    J Neurosci; 1982 Jun; 2(6):791-805. PubMed ID: 7086484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of GluA4 in the acoustic and tactile startle responses.
    García-Hernández S; Rubio ME
    Hear Res; 2022 Feb; 414():108410. PubMed ID: 34915397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recurrent mutation in KCNQ4 in Korean families with nonsyndromic hearing loss and rescue of the channel activity by KCNQ activators.
    Shin DH; Jung J; Koh YI; Rim JH; Lee JS; Choi HJ; Joo SY; Yu S; Cha DH; Lee SY; Lee JH; Lee MG; Choi JY; Gee HY
    Hum Mutat; 2019 Mar; 40(3):335-346. PubMed ID: 30556268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural organization in the brainstem circuit mediating the primary acoustic head startle: an electrophysiological study in the rat.
    Pellet J
    Physiol Behav; 1990 Nov; 48(5):727-39. PubMed ID: 2082373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of KCNQ4 as a Therapeutic Strategy to Treat Hearing Loss.
    Rim JH; Choi JY; Jung J; Gee HY
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33801540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes.
    Strutz-Seebohm N; Seebohm G; Fedorenko O; Baltaev R; Engel J; Knirsch M; Lang F
    Cell Physiol Biochem; 2006; 18(1-3):57-66. PubMed ID: 16914890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptors in the pontine brainstem are necessary for fear potentiation of the startle response.
    Fendt M; Koch M; Schnitzler HU
    Eur J Pharmacol; 1996 Dec; 318(1):1-6. PubMed ID: 9007504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of Mesopontine Cholinergic Function by the Lack of KCNQ4 Subunit.
    Bayasgalan T; Stupniki S; Kovács A; Csemer A; Szentesi P; Pocsai K; Dionisio L; Spitzmaul G; Pál B
    Front Cell Neurosci; 2021; 15():707789. PubMed ID: 34381336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models.
    Spitzmaul G; Tolosa L; Winkelman BH; Heidenreich M; Frens MA; Chabbert C; de Zeeuw CI; Jentsch TJ
    J Biol Chem; 2013 Mar; 288(13):9334-44. PubMed ID: 23408425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the Caudal Pontine Reticular Nucleus Neurons Determine the Acoustic Startle Response in
    Zheng A; Mann RS; Solaja D; Allman BL; Schmid S
    J Integr Neurosci; 2024 Mar; 23(3):63. PubMed ID: 38538232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of ion channel function in deafness-causing KCNQ4 mutants by synthetic channel openers.
    Leitner MG; Feuer A; Ebers O; Schreiber DN; Halaszovich CR; Oliver D
    Br J Pharmacol; 2012 Apr; 165(7):2244-59. PubMed ID: 21951272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in brainstem auditory processing, the acoustic startle response and sensorimotor gating of startle in Wistar audiogenic rats (WAR), an animal model of reflex epilepsies.
    Cunha AOS; Moradi M; de Deus JL; Ceballos CC; Benites NM; de Barcellos Filho PCG; de Oliveira JAC; Garcia-Cairasco N; Leão R
    Brain Res; 2020 Jan; 1727():146570. PubMed ID: 31811837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The superior olivary complex is necessary for the full expression of the acoustic but not tactile startle response in rats.
    Wagner T; Pilz PK; Fendt M
    Behav Brain Res; 2000 Mar; 108(2):181-8. PubMed ID: 10701661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway.
    Kharkovets T; Hardelin JP; Safieddine S; Schweizer M; El-Amraoui A; Petit C; Jentsch TJ
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4333-8. PubMed ID: 10760300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valproic Acid Inhibits Progressive Hereditary Hearing Loss in a KCNQ4 Variant Model through HDAC1 Suppression.
    Nam YS; Choi YM; Lee S; Cho HH
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.