BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36790022)

  • 1. Insights into the sulfur metabolism of Chlorobaculum tepidum by label-free quantitative proteomics.
    Lyratzakis A; Meier-Credo J; Langer JD; Tsiotis G
    Proteomics; 2023 May; 23(10):e2200138. PubMed ID: 36790022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium.
    Falkenby LG; Szymanska M; Holkenbrink C; Habicht KS; Andersen JS; Miller M; Frigaard NU
    FEMS Microbiol Lett; 2011 Oct; 323(2):142-50. PubMed ID: 22092713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system.
    Holkenbrink C; Barbas SO; Mellerup A; Otaki H; Frigaard NU
    Microbiology (Reading); 2011 Apr; 157(Pt 4):1229-1239. PubMed ID: 21233162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential RNA Sequencing Implicates Sulfide as the Master Regulator of S
    Hilzinger JM; Raman V; Shuman KE; Eddie BJ; Hanson TE
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum).
    Chan LK; Weber TS; Morgan-Kiss RM; Hanson TE
    Microbiology (Reading); 2008 Mar; 154(Pt 3):818-829. PubMed ID: 18310028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB.
    Azai C; Tsukatani Y; Harada J; Oh-oka H
    Photosynth Res; 2009 May; 100(2):57-65. PubMed ID: 19421892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic sulfur oxidizing system in green sulfur bacteria.
    Sakurai H; Ogawa T; Shiga M; Inoue K
    Photosynth Res; 2010 Jun; 104(2-3):163-76. PubMed ID: 20143161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorobaculum tepidum growth on biogenic S(0) as the sole photosynthetic electron donor.
    Hanson TE; Bonsu E; Tuerk A; Marnocha CL; Powell DH; Chan CS
    Environ Microbiol; 2016 Sep; 18(9):2856-67. PubMed ID: 26234460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Heterotrophic Bacterium Cupriavidus pinatubonensis JMP134 Oxidizes Sulfide to Sulfate with Thiosulfate as a Key Intermediate.
    Xin Y; Gao R; Cui F; Lü C; Liu H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical studies of a soxF-encoded monomeric flavoprotein purified from the green sulfur bacterium Chlorobaculum tepidum that stimulates in vitro thiosulfate oxidation.
    Ogawa T; Furusawa T; Shiga M; Seo D; Sakurai H; Inoue K
    Biosci Biotechnol Biochem; 2010; 74(4):771-80. PubMed ID: 20378984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation.
    Levy AT; Lee KH; Hanson TE
    Appl Environ Microbiol; 2016 Nov; 82(21):6431-6439. PubMed ID: 27565613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria.
    Gregersen LH; Bryant DA; Frigaard NU
    Front Microbiol; 2011; 2():116. PubMed ID: 21833341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum.
    Chan LK; Morgan-Kiss RM; Hanson TE
    J Bacteriol; 2009 Feb; 191(3):1026-34. PubMed ID: 19028893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorobaculum tepidum TLS displays a complex transcriptional response to sulfide addition.
    Eddie BJ; Hanson TE
    J Bacteriol; 2013 Jan; 195(2):399-408. PubMed ID: 23161024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfite oxidation in chlorobaculum tepidum.
    Rodriguez J; Hiras J; Hanson TE
    Front Microbiol; 2011; 2():112. PubMed ID: 21747809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum.
    Dahl C; Engels S; Pott-Sperling AS; Schulte A; Sander J; Lübbe Y; Deuster O; Brune DC
    J Bacteriol; 2005 Feb; 187(4):1392-404. PubMed ID: 15687204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sulfide:quinone oxidoreductase from Chlorobaculum tepidum displays unusual kinetic properties.
    Shuman KE; Hanson TE
    FEMS Microbiol Lett; 2016 Jun; 363(12):. PubMed ID: 27190141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of extracellular S0 globule production and degradation in Chlorobaculumtepidum via dynamic cell-globule interactions.
    Marnocha CL; Levy AT; Powell DH; Hanson TE; Chan CS
    Microbiology (Reading); 2016 Jul; 162(7):1125-1134. PubMed ID: 27121868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria.
    Ran M; Li Q; Xin Y; Ma S; Zhao R; Wang M; Xun L; Xia Y
    Redox Biol; 2022 Jul; 53():102345. PubMed ID: 35653932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the genome: functional studies of phototrophic sulfur oxidation.
    Hanson TE; Morgan-Kiss RM; Chan LK; Hiras J
    Adv Exp Med Biol; 2010; 675():109-21. PubMed ID: 20532738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.