These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 36790366)
1. Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements. Ye Q; Jin X; Zhu B; Gao H; Wei N Environ Sci Technol; 2023 Mar; 57(10):4276-4285. PubMed ID: 36790366 [TBL] [Abstract][Full Text] [Related]
2. Recovery of rare earth elements from low-grade coal fly ash using a recyclable protein biosorbent. Hussain Z; Dwivedi D; Kwon I Front Bioeng Biotechnol; 2024; 12():1385845. PubMed ID: 38817924 [TBL] [Abstract][Full Text] [Related]
3. Broad-spectrum and effective rare earth enriching via Lanmodulin-displayed Yarrowia lipolytica. Xie X; Yang K; Lu Y; Li Y; Yan J; Huang J; Xu L; Yang M; Yan Y J Hazard Mater; 2022 Sep; 438():129561. PubMed ID: 35999730 [TBL] [Abstract][Full Text] [Related]
4. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. Deblonde GJ; Mattocks JA; Park DM; Reed DW; Cotruvo JA; Jiao Y Inorg Chem; 2020 Sep; 59(17):11855-11867. PubMed ID: 32686425 [TBL] [Abstract][Full Text] [Related]
5. Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash. Liu P; Zhao S; Xie N; Yang L; Wang Q; Wen Y; Chen H; Tang Y Environ Sci Technol; 2023 Apr; 57(13):5414-5423. PubMed ID: 36942728 [TBL] [Abstract][Full Text] [Related]
6. Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. Zhang Y; Yan J; Xu J; Tian C; Matyjaszewski K; Tilton RD; Lowry GV Environ Sci Technol; 2021 Sep; 55(18):12549-12560. PubMed ID: 34464106 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Rare Earth Element Binding to a Surface-Bound Affinity Peptide Derived from EF-Hand Loop I of Lanmodulin. Verma G; Hostert J; Summerville AA; Robang AS; Garcia Carcamo R; Paravastu AK; Getman RB; Duval CE; Renner J ACS Appl Mater Interfaces; 2024 Apr; 16(13):16912-16926. PubMed ID: 38527460 [TBL] [Abstract][Full Text] [Related]
8. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Smith RC; Taggart RK; Hower JC; Wiesner MR; Hsu-Kim H Environ Sci Technol; 2019 Apr; 53(8):4490-4499. PubMed ID: 30907587 [TBL] [Abstract][Full Text] [Related]
9. Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements. Dong Z; Mattocks JA; Deblonde GJ; Hu D; Jiao Y; Cotruvo JA; Park DM ACS Cent Sci; 2021 Nov; 7(11):1798-1808. PubMed ID: 34841054 [TBL] [Abstract][Full Text] [Related]
10. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage. Wilfong WC; Ji T; Duan Y; Shi F; Wang Q; Gray ML J Hazard Mater; 2022 Feb; 424(Pt C):127625. PubMed ID: 34857400 [TBL] [Abstract][Full Text] [Related]
11. Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste Leachates. Brewer A; Dohnalkova A; Shutthanandan V; Kovarik L; Chang E; Sawvel AM; Mason HE; Reed D; Ye C; Hynes WF; Lammers LN; Park DM; Jiao Y Environ Sci Technol; 2019 Dec; 53(23):13888-13897. PubMed ID: 31702144 [TBL] [Abstract][Full Text] [Related]
12. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Stoy L; Diaz V; Huang CH Environ Sci Technol; 2021 Jul; 55(13):9209-9220. PubMed ID: 34159779 [TBL] [Abstract][Full Text] [Related]
13. Recovery and separation of rare Earth elements using salmon milt. Takahashi Y; Kondo K; Miyaji A; Watanabe Y; Fan Q; Honma T; Tanaka K PLoS One; 2014; 9(12):e114858. PubMed ID: 25490035 [TBL] [Abstract][Full Text] [Related]
14. Engineering biomaterials for the recovery of rare earth elements. Ye Q; Wang D; Wei N Trends Biotechnol; 2024 May; 42(5):575-590. PubMed ID: 37985335 [TBL] [Abstract][Full Text] [Related]
15. From Ashes to Riches: Microscale Phenomena Controlling Rare Earths Recovery from Coal Fly Ash. Gerardo S; Davletshin AR; Loewy SL; Song W Environ Sci Technol; 2022 Nov; 56(22):16200-16208. PubMed ID: 36240063 [TBL] [Abstract][Full Text] [Related]
16. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes. Taggart RK; Hower JC; Dwyer GS; Hsu-Kim H Environ Sci Technol; 2016 Jun; 50(11):5919-26. PubMed ID: 27228215 [TBL] [Abstract][Full Text] [Related]
17. Recovery and separation of rare earth elements using columns loaded with DNA-filter hybrid. Takahashi Y; Kondo K; Miyaji A; Umeo M; Honma T; Asaoka S Anal Sci; 2012; 28(10):985-92. PubMed ID: 23059995 [TBL] [Abstract][Full Text] [Related]
18. Enrichment and occurrence form of rare earth elements during coal and coal gangue combustion. Wu G; Shi N; Wang T; Cheng CM; Wang J; Tian C; Pan WP Environ Sci Pollut Res Int; 2022 Jun; 29(29):44709-44722. PubMed ID: 35133594 [TBL] [Abstract][Full Text] [Related]
19. Recovery of Rare Earth Elements from Low-Grade Feedstock Leachates Using Engineered Bacteria. Park DM; Brewer A; Reed DW; Lammers LN; Jiao Y Environ Sci Technol; 2017 Nov; 51(22):13471-13480. PubMed ID: 28944666 [TBL] [Abstract][Full Text] [Related]
20. Effectively auto-regulated adsorption and recovery of rare earth elements via an engineered E. coli. Xie X; Tan X; Yu Y; Li Y; Wang P; Liang Y; Yan Y J Hazard Mater; 2022 Feb; 424(Pt C):127642. PubMed ID: 34775317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]