These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 36790469)
1. An ordinal radiomic model to predict the differentiation grade of invasive non-mucinous pulmonary adenocarcinoma based on low-dose computed tomography in lung cancer screening. Li Y; Liu J; Yang X; Wang A; Zang C; Wang L; He C; Lin L; Qing H; Ren J; Zhou P Eur Radiol; 2023 May; 33(5):3072-3082. PubMed ID: 36790469 [TBL] [Abstract][Full Text] [Related]
2. Radiomic and quantitative-semantic models of low-dose computed tomography for predicting the poorly differentiated invasive non-mucinous pulmonary adenocarcinoma. Li Y; Liu J; Yang X; Xu F; Wang L; He C; Lin L; Qing H; Ren J; Zhou P Radiol Med; 2023 Feb; 128(2):191-202. PubMed ID: 36637740 [TBL] [Abstract][Full Text] [Related]
3. Prediction of invasive adenocarcinomas manifesting as pure ground-glass nodules based on radiomic signature of low-dose CT in lung cancer screening. Li Y; Liu J; Yang X; Xu H; Qing H; Ren J; Zhou P Br J Radiol; 2022 May; 95(1133):20211048. PubMed ID: 34995082 [TBL] [Abstract][Full Text] [Related]
4. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules. Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251 [TBL] [Abstract][Full Text] [Related]
5. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of predominant subtypes of lung adenocarcinoma using a quantitative radiomics approach on CT. Park S; Lee SM; Noh HN; Hwang HJ; Kim S; Do KH; Seo JB Eur Radiol; 2020 Sep; 30(9):4883-4892. PubMed ID: 32300970 [TBL] [Abstract][Full Text] [Related]
7. Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma. Xu F; Zhu W; Shen Y; Wang J; Xu R; Qutesh C; Song L; Gan Y; Pu C; Hu H Front Oncol; 2020; 10():872. PubMed ID: 32850301 [No Abstract] [Full Text] [Related]
8. Comparison of Radiomic Models Based on Low-Dose and Standard-Dose CT for Prediction of Adenocarcinomas and Benign Lesions in Solid Pulmonary Nodules. Liu J; Xu H; Qing H; Li Y; Yang X; He C; Ren J; Zhou P Front Oncol; 2020; 10():634298. PubMed ID: 33604303 [TBL] [Abstract][Full Text] [Related]
9. Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study. Wu G; Woodruff HC; Shen J; Refaee T; Sanduleanu S; Ibrahim A; Leijenaar RTH; Wang R; Xiong J; Bian J; Wu J; Lambin P Radiology; 2020 Nov; 297(2):451-458. PubMed ID: 32840472 [TBL] [Abstract][Full Text] [Related]
10. The solid component within part-solid nodules: 3-dimensional quantification, correlation with the malignant grade of nonmucinous pulmonary adenocarcinomas, and comparisons with 2-dimentional measures and semantic features in low-dose computed tomography. Liu J; Xie C; Li Y; Xu H; He C; Qing H; Zhou P Cancer Imaging; 2023 Jun; 23(1):65. PubMed ID: 37349824 [TBL] [Abstract][Full Text] [Related]
11. A computerized tomography-based radiomic model for assessing the invasiveness of lung adenocarcinoma manifesting as ground-glass opacity nodules. Zhu M; Yang Z; Wang M; Zhao W; Zhu Q; Shi W; Yu H; Liang Z; Chen L Respir Res; 2022 Apr; 23(1):96. PubMed ID: 35429974 [TBL] [Abstract][Full Text] [Related]
12. A comparative study for the evaluation of CT-based conventional, radiomic, combined conventional and radiomic, and delta-radiomic features, and the prediction of the invasiveness of lung adenocarcinoma manifesting as ground-glass nodules. Lv Y; Ye J; Yin YL; Ling J; Pan XP Clin Radiol; 2022 Oct; 77(10):e741-e748. PubMed ID: 35840455 [TBL] [Abstract][Full Text] [Related]
13. Prediction of pathological nodal involvement by CT-based Radiomic features of the primary tumor in patients with clinically node-negative peripheral lung adenocarcinomas. Liu Y; Kim J; Balagurunathan Y; Hawkins S; Stringfield O; Schabath MB; Li Q; Qu F; Liu S; Garcia AL; Ye Z; Gillies RJ Med Phys; 2018 Jun; 45(6):2518-2526. PubMed ID: 29624702 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Interval Growth of Lung Adenocarcinomas Manifesting as Persistent Subsolid Nodules ≤3 cm Based on Radiomic Features. Wu FZ; Wu YJ; Chen CS; Tang EK Acad Radiol; 2023 Dec; 30(12):2856-2869. PubMed ID: 37080884 [TBL] [Abstract][Full Text] [Related]
15. The development and validation of a radiomic nomogram for the preoperative prediction of lung adenocarcinoma. Liu Q; Huang Y; Chen H; Liu Y; Liang R; Zeng Q BMC Cancer; 2020 Jun; 20(1):533. PubMed ID: 32513144 [TBL] [Abstract][Full Text] [Related]
16. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Zhu X; Dong D; Chen Z; Fang M; Zhang L; Song J; Yu D; Zang Y; Liu Z; Shi J; Tian J Eur Radiol; 2018 Jul; 28(7):2772-2778. PubMed ID: 29450713 [TBL] [Abstract][Full Text] [Related]
17. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival. Yuan M; Zhang YD; Pu XH; Zhong Y; Li H; Wu JF; Yu TF Eur Radiol; 2017 Nov; 27(11):4857-4865. PubMed ID: 28523350 [TBL] [Abstract][Full Text] [Related]
18. CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists. Kim H; Lee D; Cho WS; Lee JC; Goo JM; Kim HC; Park CM Eur Radiol; 2020 Jun; 30(6):3295-3305. PubMed ID: 32055949 [TBL] [Abstract][Full Text] [Related]
19. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Yoon J; Suh YJ; Han K; Cho H; Lee HJ; Hur J; Choi BW Thorac Cancer; 2020 Apr; 11(4):993-1004. PubMed ID: 32043309 [TBL] [Abstract][Full Text] [Related]
20. Predicting Ki-67 labeling index level in early-stage lung adenocarcinomas manifesting as ground-glass opacity nodules using intra-nodular and peri-nodular radiomic features. Zhu M; Yang Z; Zhao W; Wang M; Shi W; Cheng Z; Ye C; Zhu Q; Liu L; Liang Z; Chen L Cancer Med; 2022 Nov; 11(21):3982-3992. PubMed ID: 35332684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]