These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36790595)

  • 21. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2- and diffusion-weighted MRI.
    Bostel T; Dreher C; Wollschläger D; Mayer A; König F; Bickelhaupt S; Schlemmer HP; Huber PE; Sterzing F; Bäumer P; Debus J; Nicolay NH
    Radiat Oncol; 2020 Jul; 15(1):171. PubMed ID: 32653003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging.
    Liu S; Wen L; Hou J; Nie S; Zhou J; Cao F; Lu Q; Qin Y; Fu Y; Yu X
    Abdom Radiol (NY); 2019 Aug; 44(8):2689-2698. PubMed ID: 31030244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion-weighted MRI and
    Xu X; Sun ZY; Wu HW; Zhang CP; Hu B; Rong L; Chen HY; Xie HY; Wang YM; Lin HP; Bai YR; Ye Q; Ma XM
    Radiat Oncol; 2021 Jul; 16(1):132. PubMed ID: 34281566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The value of MR T2WI signal intensity related parameters for predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer].
    Wan LJ; Zhang CD; Zhang HM; Meng YK; Ye F; Liu Y; Zhao XM; Zhou CW
    Zhonghua Zhong Liu Za Zhi; 2019 Nov; 41(11):837-843. PubMed ID: 31770851
    [No Abstract]   [Full Text] [Related]  

  • 25. [Application of magnetic resonance in "non-operative treatment" strategy for rectal cancer].
    Wang Y; Chen G
    Zhonghua Wei Chang Wai Ke Za Zhi; 2017 Jun; 20(6):630-634. PubMed ID: 28643307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Prognosis and complications of local excision for rectal cancer after neoadjuvant chemoradiotherapy].
    Li YH; Qiu XY; Lin GL; Zhou JL; Xiao Y; Qiu HZ
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):344-351. PubMed ID: 33878824
    [No Abstract]   [Full Text] [Related]  

  • 27. A Pattern-Based Approach Combining Tumor Morphology on MRI With Distinct Signal Patterns on Diffusion-Weighted Imaging to Assess Response of Rectal Tumors After Chemoradiotherapy.
    Lambregts DMJ; Delli Pizzi A; Lahaye MJ; van Griethuysen JJM; Maas M; Beets GL; Bakers FCH; Beets-Tan RGH
    Dis Colon Rectum; 2018 Mar; 61(3):328-337. PubMed ID: 29369900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnostic accuracy of MRI in assessing tumor regression and identifying complete response in patients with locally advanced rectal cancer after neoadjuvant treatment.
    Aker M; Boone D; Chandramohan A; Sizer B; Motson R; Arulampalam T
    Abdom Radiol (NY); 2018 Dec; 43(12):3213-3219. PubMed ID: 29767284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Using MR Images and Deep Learning Neural Networks.
    Cingoz E; Ertas G; Kaval G; Azamat S; Karaman S; Kulle CB; Berker N; Cingöz M; Dagoglu Sakin N; Comert RG; Buyuk M; Kartal MGD
    Curr Med Imaging; 2024; 20():e15734056309748. PubMed ID: 38874041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The value of multimodality MR in T staging evaluation after neoadjuvant therapy for rectal cancer.
    Liu B; Sun C; Zhao X; Liu L; Liu S; Ma H
    Technol Health Care; 2024; 32(2):615-627. PubMed ID: 37393447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modest agreement between magnetic resonance and pathological tumor regression after neoadjuvant therapy for rectal cancer in the real world.
    Achilli P; Magistro C; Abd El Aziz MA; Calini G; Bertoglio CL; Ferrari G; Mari G; Maggioni D; Peros G; Tamburello S; Coppola E; Spinelli A; Grass F; Martin D; Hahnloser D; Salvatori A; De Simoni S; Sheedy SP; Fletcher JG; Larson DW
    Int J Cancer; 2022 Jul; 151(1):120-127. PubMed ID: 35191540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer.
    Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS
    Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endoscopy and magnetic resonance imaging-based prediction of ypT stage in patients with rectal cancer who received chemoradiotherapy: Results from a prospective study of 110 patients.
    Cho MS; Kim H; Han YD; Hur H; Min BS; Baik SH; Cheon JH; Lim JS; Lee KY; Kim NK
    Medicine (Baltimore); 2019 Aug; 98(35):e16614. PubMed ID: 31464897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Apparent Diffusion Coefficient Predicts Pathology Complete Response of Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy.
    Chen YG; Chen MQ; Guo YY; Li SC; Wu JX; Xu BH
    PLoS One; 2016; 11(4):e0153944. PubMed ID: 27100991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: A prospective cohort study.
    Wang Y; Yang L; Bao H; Fan X; Xia F; Wan J; Shen L; Guan Y; Bao H; Wu X; Xu Y; Shao Y; Sun Y; Tong T; Li X; Xu Y; Cai S; Zhu J; Zhang Z
    PLoS Med; 2021 Aug; 18(8):e1003741. PubMed ID: 34464382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prognostic Value of Tumor Volume, Tumor Volume Reduction Rate and Magnetic Resonance Tumor Regression Grade in Rectal Cancer.
    Pikūnienė I; Strakšytė V; Basevičius A; Žilinskas J; Ambrazienė R; Jančiauskienė R; Saladžinskas Ž
    Medicina (Kaunas); 2023 Dec; 59(12):. PubMed ID: 38138297
    [No Abstract]   [Full Text] [Related]  

  • 37. Image Quality Assessment of 2D
    Hausmann D; Liu J; Budjan J; Reichert M; Ong M; Meyer M; Smakic A; Grimm R; Strecker R; Schoenberg SO; Wang X; Attenberger UI
    Anticancer Res; 2018 Feb; 38(2):969-978. PubMed ID: 29374729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.
    Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS
    Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer.
    Kim S; Han K; Seo N; Kim HJ; Kim MJ; Koom WS; Ahn JB; Lim JS
    Eur Radiol; 2018 Dec; 28(12):5231-5240. PubMed ID: 29858637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI.
    Bellini D; Carbone I; Rengo M; Vicini S; Panvini N; Caruso D; Iannicelli E; Tombolini V; Laghi A
    Tomography; 2022 Aug; 8(4):2059-2072. PubMed ID: 36006071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.