BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36790610)

  • 21. Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing.
    Grunenwald A; Keyser C; Sautereau AM; Crubézy E; Ludes B; Drouet C
    Anal Bioanal Chem; 2014 Jul; 406(19):4691-704. PubMed ID: 24838416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones.
    Dal Sasso G; Angelini I; Maritan L; Artioli G
    Talanta; 2018 Mar; 179():167-176. PubMed ID: 29310218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain.
    Lebon M; Reiche I; Fröhlich F; Bahain JJ; Falguères C
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1479-88. PubMed ID: 18972105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histological estimation of age at death from the compact bone of burned and unburned human ribs.
    Absolonova K; Veleminsky P; Dobisikova M; Beran M; Zocova J
    J Forensic Sci; 2013 Jan; 58 Suppl 1():S135-45. PubMed ID: 23305177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effect of Soft Tissue on Temperature Estimation from Burnt Bone Using Fourier Transform Infrared Spectroscopy.
    Ellingham ST; Thompson TJ; Islam M
    J Forensic Sci; 2016 Jan; 61(1):153-9. PubMed ID: 26275238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First analysis of ancient burned human skeletal remains probed by neutron and optical vibrational spectroscopy.
    Festa G; Andreani C; Baldoni M; Cipollari V; Martínez-Labarga C; Martini F; Rickards O; Rolfo MF; Sarti L; Volante N; Senesi R; Stasolla FR; Parker SF; Vassalo AR; Mamede AP; Batista de Carvalho LAE; Marques MPM
    Sci Adv; 2019 Jun; 5(6):eaaw1292. PubMed ID: 31259242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human bone probed by neutron diffraction: the burning process.
    Mamede AP; Marques MPM; Vassalo AR; Cunha E; Gonçalves D; Parker SF; Kockelmann W; Batista de Carvalho LAE
    RSC Adv; 2019 Nov; 9(63):36640-36648. PubMed ID: 35539083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The orange-brown patina of Salisbury Cathedral (West Porch) surfaces: evidence of its man-made origin.
    Martín-Gil J; Martín-Gil FJ; del Carmen Ramos-Sánchez M; Martín-Ramos P
    Environ Sci Pollut Res Int; 2005 Sep; 12(5):285-9. PubMed ID: 16206722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel dating method to distinguish between forensic and archeological human skeletal remains by bone mineralization indexes.
    Patonai Z; Maasz G; Avar P; Schmidt J; Lorand T; Bajnoczky I; Mark L
    Int J Legal Med; 2013 Mar; 127(2):529-33. PubMed ID: 23108457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining Volumetric Shrinkage Trends of Burnt Bone Using Micro-CT.
    Ellingham S; A Sandholzer M
    J Forensic Sci; 2020 Jan; 65(1):196-199. PubMed ID: 31397893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Profiling of human burned bones: oxidising versus reducing conditions.
    Marques MPM; Gonçalves D; Mamede AP; Coutinho T; Cunha E; Kockelmann W; Parker SF; Batista de Carvalho LAE
    Sci Rep; 2021 Jan; 11(1):1361. PubMed ID: 33446708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light microscopy of microfractures in burned bone.
    Schmidt CW; Uhlig R
    Methods Mol Biol; 2012; 915():227-34. PubMed ID: 22907411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macroscopic determination of the pre-burning condition of human remains recovered from an unusual forensic context: A case report.
    Monetti L; Voulgari M; Karagiorgou I; Moraitis K
    J Forensic Leg Med; 2021 Feb; 78():102115. PubMed ID: 33454655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential application of Raman spectroscopy for determining burial duration of skeletal remains.
    McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2011 Nov; 401(8):2511-8. PubMed ID: 21870069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin.
    Boskey AL; Gadaleta S; Gundberg C; Doty SB; Ducy P; Karsenty G
    Bone; 1998 Sep; 23(3):187-96. PubMed ID: 9737340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separating forensic, WWII, and archaeological human skeletal remains using ATR-FTIR spectra.
    Leskovar T; Zupanič Pajnič I; Jerman I; Črešnar M
    Int J Legal Med; 2020 Mar; 134(2):811-821. PubMed ID: 31172274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fourier transform infrared spectroscopy research on subchondral bone in osteoarthritis.
    Zhai M; Lu Y; Fu J; Zhu Y; Zhao Y; Shang L; Yin J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul; 218():243-247. PubMed ID: 31003049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains.
    Wang Q; Zhang Y; Lin H; Zha S; Fang R; Wei X; Fan S; Wang Z
    Forensic Sci Int; 2017 Dec; 281():113-120. PubMed ID: 29127892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research potential and limitations of trace analyses of cremated remains.
    Harbeck M; Schleuder R; Schneider J; Wiechmann I; Schmahl WW; Grupe G
    Forensic Sci Int; 2011 Jan; 204(1-3):191-200. PubMed ID: 20609539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "Sex change" in skeletal remains: Assessing how heat-induced changes interfere with sex estimation.
    Ochôa Rodrigues C; Ferreira MT; Matos V; Gonçalves D
    Sci Justice; 2021 Jan; 61(1):26-36. PubMed ID: 33357825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.