BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36790753)

  • 1. Morphological correlates of distal fibular morphology with locomotion in great apes, humans, and Australopithecus afarensis.
    Marchi D; Rimoldi A; García-Martínez D; Bastir M
    Am J Biol Anthropol; 2022 Jun; 178(2):286-300. PubMed ID: 36790753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the morphology of the hominoid distal fibula to interpret arboreality in Australopithecus afarensis.
    Marchi D
    J Hum Evol; 2015 Aug; 85():136-48. PubMed ID: 26142774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenetic and functional analyses of the distal ulna of Australopithecus afarensis and Australopithecus africanus.
    Tallman M
    Anat Rec (Hoboken); 2015 Jan; 298(1):195-211. PubMed ID: 25529241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional geometric morphometric analysis of the first metacarpal distal articular surface in humans, great apes and fossil hominins.
    Galletta L; Stephens NB; Bardo A; Kivell TL; Marchi D
    J Hum Evol; 2019 Jul; 132():119-136. PubMed ID: 31203843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D geometric morphometric analysis of the proximal epiphysis of the hominoid humerus.
    Arias-Martorell J; Potau JM; Bello-Hellegouarch G; Pastor JF; Pérez-Pérez A
    J Anat; 2012 Nov; 221(5):394-405. PubMed ID: 22946496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological differences in the calcaneus among extant great apes investigated by three-dimensional geometric morphometrics.
    Nozaki S; Amano H; Oishi M; Ogihara N
    Sci Rep; 2021 Oct; 11(1):20889. PubMed ID: 34686756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcaneal robusticity in Plio-Pleistocene hominins: implications for locomotor diversity and phylogeny.
    Prang TC
    J Hum Evol; 2015 Mar; 80():135-46. PubMed ID: 25440133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Geometric Morphometric Examination of Hominoid Third Metacarpal Shape and Its Implications for Inferring the Precursor to Terrestrial Bipedalism.
    Rein TR
    Anat Rec (Hoboken); 2019 Jun; 302(6):983-998. PubMed ID: 30332719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcaneal shape variation in humans, nonhuman primates, and early hominins.
    Harper CM; Ruff CB; Sylvester AD
    J Hum Evol; 2021 Oct; 159():103050. PubMed ID: 34438297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ulnar shape of extant primates: Functional signals and covariation with triquetrum shape.
    Vanhoof MJM; Galletta L; Matthews H; De Groote I; Vereecke EE
    Am J Biol Anthropol; 2024 Mar; 183(3):e24755. PubMed ID: 37171151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometric analysis of the hominin talus: Evolutionary and functional implications.
    Sorrentino R; Carlson KJ; Bortolini E; Minghetti C; Feletti F; Fiorenza L; Frost S; Jashashvili T; Parr W; Shaw C; Su A; Turley K; Wroe S; Ryan TM; Belcastro MG; Benazzi S
    J Hum Evol; 2020 May; 142():102747. PubMed ID: 32240884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Like father, like son: assessment of the morphological affinities of A.L. 288-1 (A. afarensis), Sts 7 (A. africanus) and Omo 119-73-2718 (Australopithecus sp.) through a three-dimensional shape analysis of the shoulder joint.
    Arias-Martorell J; Potau JM; Bello-Hellegouarch G; Pérez-Pérez A
    PLoS One; 2015; 10(2):e0117408. PubMed ID: 25651542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcar femorale variation in extant and fossil hominids: Implications for identifying bipedal locomotion in fossil hominins.
    Cazenave M; Kivell TL; Pina M; Begun DR; Skinner MM
    J Hum Evol; 2022 Jun; 167():103183. PubMed ID: 35462072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics.
    Lockwood CA; Lynch JM; Kimbel WH
    J Anat; 2002 Dec; 201(6):447-64. PubMed ID: 12489757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand?
    Ward CV
    Am J Phys Anthropol; 2002; Suppl 35():185-215. PubMed ID: 12653313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to suspensory locomotion in Australopithecus sediba.
    Rein TR; Harrison T; Carlson KJ; Harvati K
    J Hum Evol; 2017 Mar; 104():1-12. PubMed ID: 28317552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconciling the convergence of supraspinous fossa shape among hominoids in light of locomotor differences.
    Green DJ; Sugiura Y; Seitelman BC; Gunz P
    Am J Phys Anthropol; 2015 Apr; 156(4):498-510. PubMed ID: 25607373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metatarsophalangeal joint function and positional behavior in Australopithecus afarensis.
    Duncan AS; Kappelman J; Shapiro LJ
    Am J Phys Anthropol; 1994 Jan; 93(1):67-81. PubMed ID: 8141243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limb-size proportions in Australopithecus afarensis and Australopithecus africanus.
    Green DJ; Gordon AD; Richmond BG
    J Hum Evol; 2007 Feb; 52(2):187-200. PubMed ID: 17049965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scapular morphology of great apes and humans: A three-dimensional computed tomography-based comparative study.
    Vermeulen V; Kozma E; Delsupehe A; Cornillie P; Stock E; Van Tongel A; De Wilde L; Vereecke EE
    J Anat; 2023 Feb; 242(2):164-173. PubMed ID: 36302086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.